Я рассмотрю треугольник у которого боковые есть :AB, BC Пусть в треугольнике ABC AB=a, BC=b. причем a не равно b опустим медиану BH и предположим что она высота т.к. BH-медиана, то AH=HC=x т.к BH-высота, то треугольники ABH и BHC -прямоугольные, а боковые стороны ABC - их соответственные гипотенузы. тогда по теореме пифагора для ABH, x^2=a^2-h^2, где h-высота и медиана. в треугольнике BHC по теор. пифагора x^2=b^2-h^2 т.к. x^2=x^2 то a^2-h^2=b^2-h^2 откуда a^2=b^2 значит a=b что противоречит условию, следовательно медиана в таком трекгольнике не является высотой
(НЕОБХОДИМЫЕ пояснения: Вершина пирамиды проектируется в центр вписаной окружности, r = H/3)
Ладно, может и правда, нужно...
Опускаем перпендикуляр из вершины на основание. То, что это будет центр правильного треугольника, и доказывать не надо - все так симметрично, что иначе и быть не может. Но, для фана, скажу, что раз ребра равны, то и проекции их на основание будут равны, а в правильном треугольнике центр описанной окружности совпадает с центром вписаной : Далее, проводим сечение пирамиды через ребро и высоту пирамиды. То, что это сечение пройдет через высоту противоположной грани (апофему), тоже доказать несложно, поскольку эта плоскость уже содержит 2 прямых, перпендикулярных ребру... Ну, и косинус двуграного угла равен расстоянию от центра треугольника до стороны, деленному на апофему. Ладно...
Пусть в треугольнике ABC AB=a, BC=b. причем a не равно b
опустим медиану BH и предположим что она высота
т.к. BH-медиана, то AH=HC=x
т.к BH-высота, то треугольники ABH и BHC -прямоугольные, а боковые стороны ABC - их соответственные гипотенузы.
тогда по теореме пифагора для ABH, x^2=a^2-h^2, где h-высота и медиана.
в треугольнике BHC по теор. пифагора x^2=b^2-h^2
т.к. x^2=x^2
то
a^2-h^2=b^2-h^2
откуда
a^2=b^2
значит
a=b
что противоречит условию, следовательно медиана в таком трекгольнике не является высотой
(Комментарий забанен автором)
ответ 1/3
(НЕОБХОДИМЫЕ пояснения: Вершина пирамиды проектируется в центр вписаной окружности, r = H/3)
Ладно, может и правда, нужно...
Опускаем перпендикуляр из вершины на основание. То, что это будет центр правильного треугольника, и доказывать не надо - все так симметрично, что иначе и быть не может. Но, для фана, скажу, что раз ребра равны, то и проекции их на основание будут равны, а в правильном треугольнике центр описанной окружности совпадает с центром вписаной : Далее, проводим сечение пирамиды через ребро и высоту пирамиды. То, что это сечение пройдет через высоту противоположной грани (апофему), тоже доказать несложно, поскольку эта плоскость уже содержит 2 прямых, перпендикулярных ребру... Ну, и косинус двуграного угла равен расстоянию от центра треугольника до стороны, деленному на апофему. Ладно...