а) по теореме Пифагора найдём гипотенузу АВ: АВ²=АС²+ВС²
АВ=√(8²+6²)=√(64+36)=√100=10см
Зная, что центр описанной окружности около прямоугольного треугольника, является середина его гипотенузы. Поэтому R=AB÷2
R=10÷2=5см;
ответ: R=5см
б) катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому гипотенуза АВ будет в 2 раза больше него: АВ=АС×2; АВ=18×2=36см;
Также R=AB÷2; R=36÷2=18.
ответ: R=18см
От себя добавлю что если вычислять по формуле, которая дана в задании, то результат получается другой. Например: следуя ей и используя данные задания "а", получится следующее: R=(a+b-c)÷2=(8+6-10)÷2=
=(14-10)÷2=4÷2=2. Совсем другой результат. Правило, что центр описанной окружности в прямоугольном треугольнике является середина гипотенузы, верно
Построено сечение с учётом расположения линий в каждой плоскости.
Длины линий сечения.
AE = √(8² + 4²) = √(64 + 16) = √80 = 4√5.
Длину В1К находим из пропорции (В1К/8 = (8/(8+4)),
отсюда В1К = (8*8)/12 = 16/3.
Тогда ЕК = √(4² + (16/3)²) = √(400/9) = 20/3.
KP = √((8 - (16/3))² + 4²) = √(208/9) = (4/3)√13.
Длину СТ находим из пропорции.
Так как СМ = КС1 = 8 / (16/3) = 8/3, то СМ/СТ = (ВМ/АВ.
Подставим данные. (8/3)/СТ = (8 + (8/3)/8. Получаем СТ = 2.
РТ = √(4² + 2²) = √20 = 2√5.
ДТ = 8 - 2 = 6.
АТ = √(8² + 6²) = 10.
ответ: Р = 4√5 + (20/3) + ((4/3)√13) + (2√5) + 10 =
= 6√5 + (20/3) + ((4/3)√13) + 10.
Объяснение:
а) по теореме Пифагора найдём гипотенузу АВ: АВ²=АС²+ВС²
АВ=√(8²+6²)=√(64+36)=√100=10см
Зная, что центр описанной окружности около прямоугольного треугольника, является середина его гипотенузы. Поэтому R=AB÷2
R=10÷2=5см;
ответ: R=5см
б) катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому гипотенуза АВ будет в 2 раза больше него: АВ=АС×2; АВ=18×2=36см;
Также R=AB÷2; R=36÷2=18.
ответ: R=18см
От себя добавлю что если вычислять по формуле, которая дана в задании, то результат получается другой. Например: следуя ей и используя данные задания "а", получится следующее: R=(a+b-c)÷2=(8+6-10)÷2=
=(14-10)÷2=4÷2=2. Совсем другой результат. Правило, что центр описанной окружности в прямоугольном треугольнике является середина гипотенузы, верно
ФОРМУЛА НА САМОМ ДЕЛЕ ТАКАЯ:
R=½×√(a²+b²), где " а" и "b"- катеты