Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
2) Точки А (4;2; -1), C (-4;2; 1), D (7; -3; 4) вершины параллелограмма АВСD.
Вектор АВ равен DС.
Находим DC= (-4-7; 2-(-3); 1-4) = (-11; 5; -3).
Отсюда находим координаты точки B.
x(B) = x(A) - 11 = 4 - 11 = -7,
y(B) = y(A) + 5 = 2 + 5 = 7,
z(B) = z(A) - 3 = -1 - 3 = -4.
ответ: B(-7; 7; -4).
4) Примем координаты точки A, принадлежащей оси абсцисс и равноудалённой от точек B(1; 2; 2) и C(-2; 1; 4), равными: A;(x; 0; 0)).
Из равенства расстояний AB и AC составим уравнение:
(1 - x)² + 2² + 2² = (-2 - x)² +1² + 4².
1 - 2x+ x² + 4 + 4 = 4 + 4x + x² + 1 + 16.
6x = -12. x = -12/6 = -2.
ответ: точка A((-2; 0; 0).
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).