Находим координаты направляющего вектора прямой NM:
NM: (1; 1; 1).
Принимаем координаты направляющего вектора прямой NM как соответствующие координаты нормального вектора n плоскости α :
n = (A; B; C). То есть, A = 1, B = 1, C = 1.
Записываем уравнение плоскости, проходящей через точку А(2; 1; 0) и имеющей нормальный вектор n(A; B; C), в виде:
A(x -x1) + B(y - y1) + C(z - x1) - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.
Пусть этот треугольник будет АВС. Медианы треугольника точкой пересечения О делятся в отношении 2:1, считая от вершины. Тогда основание и части медиан, идущие от вершин при основании, образуют треугольник АОС со сторонами АС=26, АО=39:3*2 =26, и СО= 30:3*2=20. По формуле Герона площадь треугольника АОС будет 240 ( проверьте). Медианы делят треугольник на равновеликие треугольники. Если из В провести третью медиану, то треугольник будет разделен на 6 равных по площади треугольника. Треугольник АОС равен 1/3 площади исходного треугольника. Площадь ∆ АВС равна S=240*3=720 (ед. площади)
Даны : А(2,1,0), М(3,-2,1), N(2,-3,0).
Находим координаты направляющего вектора прямой NM:
NM: (1; 1; 1).
Принимаем координаты направляющего вектора прямой NM как соответствующие координаты нормального вектора n плоскости α :
n = (A; B; C). То есть, A = 1, B = 1, C = 1.
Записываем уравнение плоскости, проходящей через точку А(2; 1; 0) и имеющей нормальный вектор n(A; B; C), в виде:
A(x -x1) + B(y - y1) + C(z - x1) - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.
Подставляем данные -
α: 1(x -2) + 1(y - 1) + 1z = x + y + z - 3 = 0.
ответ: уравнение плоскости α: x + y + z - 3 = 0.
Медианы треугольника точкой пересечения О делятся в отношении 2:1, считая от вершины.
Тогда основание и части медиан, идущие от вершин при основании, образуют треугольник АОС со сторонами АС=26, АО=39:3*2 =26, и СО= 30:3*2=20.
По формуле Герона площадь треугольника АОС будет 240 ( проверьте).
Медианы делят треугольник на равновеликие треугольники. Если из В провести третью медиану, то треугольник будет разделен на 6 равных по площади треугольника.
Треугольник АОС равен 1/3 площади исходного треугольника.
Площадь ∆ АВС равна
S=240*3=720 (ед. площади)