Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Число k, равное отношению сходственных сторон треугольника называется коэффициентом подобия. Через середину наибольшей стороны треугольника проведена прямая-зачит линия делит сторону пополам и k=1/2; А). 6,7,8
Б). 6,7,9
В). 6,7,10. Во всех трёх примерах наименьшая сторона равна 6,соотвественно-6/2=3 Поэтому решение одно во всех трёх случаях! ответ: наименьшая сторона отсеченного треугольника равна 3(один ответ во всех трёх случаях).
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.
Число k, равное отношению сходственных сторон треугольника называется коэффициентом подобия.
Через середину наибольшей стороны треугольника проведена прямая-зачит линия делит сторону пополам и k=1/2;
А). 6,7,8
Б). 6,7,9
В). 6,7,10.
Во всех трёх примерах наименьшая сторона равна 6,соотвественно-6/2=3
Поэтому решение одно во всех трёх случаях!
ответ: наименьшая сторона отсеченного треугольника равна 3(один ответ во всех трёх случаях).
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.