Средняя линия треугольника соединяет середины двух сторон треугольника, параллельна и равна половине третьей стороны. Средние линии делят исходный треугольника на 4 равных ( см. рисунок). Треугольник, образованный средними линиями треугольника, подобен исходному ( по равенству соответственных углов, образованных при пересечении параллельных средней линии и стороны треугольника секущей – стороной исходного треугольника). Коэффициент подобия k=1/2. Треугольник со сторонами 3,4, 5 - египетский, т.е. прямоугольный. Его площадь - половина произведения катетов. S=3•4:2=6 см²
Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если исходный треугольник АВС, а середины его сторон К, М, Н, то Ѕ(КМН)=1/4•Ѕ(АВС)=1,5 см²
Каждый такой треугольник - грань развёртки тетраэдра. Площадь грани - 1,5 см²
Если двугранные углы при основании пирамиды равны, то основание высоты пирамиды - это центр вписанной в треугольник основания окружности.
Находим боковые стороны "в" и "с" основания:
в = с = √((12/2)² + 10²) = √(36 + 100) = √136 = 2√34.
Площадь основания S = (1/2)*12*10 = 60 см².
Полупериметр р = (2*2√34 + 12)/2 = (2√34 + 6) см.
Радиус вписанной окружности r = S/p = 60/(2√34 + 6 = 30/(√34 + 3).
Так как угол наклона боковых граней равен 45 градусов, то высота пирамиды равна радиусу вписанной окружности.
ответ: Н = r = 30/(√34 + 3).
Средняя линия треугольника соединяет середины двух сторон треугольника, параллельна и равна половине третьей стороны. Средние линии делят исходный треугольника на 4 равных ( см. рисунок). Треугольник, образованный средними линиями треугольника, подобен исходному ( по равенству соответственных углов, образованных при пересечении параллельных средней линии и стороны треугольника секущей – стороной исходного треугольника). Коэффициент подобия k=1/2. Треугольник со сторонами 3,4, 5 - египетский, т.е. прямоугольный. Его площадь - половина произведения катетов. S=3•4:2=6 см²
Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если исходный треугольник АВС, а середины его сторон К, М, Н, то Ѕ(КМН)=1/4•Ѕ(АВС)=1,5 см²
Каждый такой треугольник - грань развёртки тетраэдра. Площадь грани - 1,5 см²