Пусть плоскость α проходит через прямую a, при этом прямая a параллельна прямой b.
Докажем, что прямая b параллельна плоскости α, то есть, у прямой b и плосости α нет общих точек. Через две параллельные прямые проходит ровно одна плоскость. Обозачим за β плоскость, проходящую через а и b. Плоскости α и β пересекаются по прямой a, значит, все общие точки плоскостей α и β лежат на прямой а. Предположим, что у прямой b и плоскости α есть общая точка N, тогда точка N не лежит на прямой a (прямые a и b параллельны), но при этом точка N принадлежит и плоскости α, и плоскости β (так как все точки, лежащие на прямой b, принадлежат β). Получили противоречие с тем, что все общие точки плоскостей α и β лежат на прямой a. Значит, у прямой b и плоскости α нет общих точек, то есть, α || b.
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Докажем, что прямая b параллельна плоскости α, то есть, у прямой b и плосости α нет общих точек. Через две параллельные прямые проходит ровно одна плоскость. Обозачим за β плоскость, проходящую через а и b. Плоскости α и β пересекаются по прямой a, значит, все общие точки плоскостей α и β лежат на прямой а. Предположим, что у прямой b и плоскости α есть общая точка N, тогда точка N не лежит на прямой a (прямые a и b параллельны), но при этом точка N принадлежит и плоскости α, и плоскости β (так как все точки, лежащие на прямой b, принадлежат β). Получили противоречие с тем, что все общие точки плоскостей α и β лежат на прямой a. Значит, у прямой b и плоскости α нет общих точек, то есть, α || b.
Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.
Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину.
Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).