1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
3) Поставьте на конце диаметра ВО точку Д. Диаметр ВД делит окружность на две равные дуги: ∪ВАД = ∪ВСД = 180°.
Равные хорды окружности отделяют равные дуги ⇒ ∪ВА=∪ВС,
тогда ∪АД=180°-∪ВА, ∪СД=180°-∪ВС=180°-∪ВА , получили, что
∪АД=∪СД. Но на эти равные дуги опираются вписанные углы
∠1 и ∠2 ⇒∠1 =∠2 . Ч.т.д.
6) Соединим точки О и А, а также О и В.
ΔОАК=ΔОВК по гипотенузе и катету (∠ОКА=∠ОКВ=90° по условию,ОА=ОВ как радиусы одной окружности, ОК- общий катет).
Из равенства треугольников следует, что КА=КВ. Ч.т.д.
2) ΔОКА=ΔОКВ по третьему признаку равенства треугольников
(АК=КВ по условию, ОК- общая сторона, ОА=ОВ как радиусы одной окружности).
Из равенства треугольников следует, что ∠ОКА=∠ОКВ, но
∠ОКА и ∠ОКВ- смежные и ∠ОКА+∠ОКВ=180° по свойству смежных углов ⇒ ∠ОКА=∠ОКВ=180°:2=90°. Ч.т.д.