Рискну, все-таки, представить решение. Возьмем произвольную точку С на окружности (O;R). Треугольник АВС - прямоугольный, так как опирается на диаметр. Точка J - центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС. Проведем прямую СJ до пересечения с описанной окружностью (O;R). Точка пересечения D - конец диаметра, так как вписанный <DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается). Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ. Проведем прямую АJ до пересечения с описанной окружностью (O;R). <BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ. И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В. Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).
2) Медиана, проведенная к основанию равнобедренного треугольника, является и высотой, и биссектрисой, значит МС=АС/2=28, и тогда по Теореме Пифагора получим, что . ВМ=45.
3) Так как длина дуги по формуле ищется как , то отношение длин задает отношение центральных углов, которыми данные дуги определены, то есть один центральный угол будет равен 9х, а другой 11х. В сумме они дают 360 градусов, значит: 9х+11х=360, тогда 20х=360, х=18. Центральный угол, опирающийся на меньшую из дуг равен 9х=9*18=162 градуса.
Возьмем произвольную точку С на окружности (O;R).
Треугольник АВС - прямоугольный, так как опирается на диаметр.
Точка J - центр вписанной в этот треугольник окружности - лежит на пересечении биссектрис углов треугольника АВС.
Проведем прямую СJ до пересечения с описанной окружностью (O;R).
Точка пересечения D - конец диаметра, так как вписанный
<DCB=45° и центральный угол DОВ=90° (при любом положении точки С, исключая точки А и В, так как в этом случае треугольник АВС вырождается).
Заметим, что <AJD=(<A+<C)/2, как внешний угол треугольника ACJ.
Проведем прямую АJ до пересечения с описанной окружностью (O;R).
<BAC1=(1/2)*<A, <DAB=(1/2)*<C (вписанный, опирающийся на одну дугу, что и <DCB). Значит <DAC1=<DAJ=(<A+<C)/2, треугольник DAJ равнобедренный и АD=DJ. И это, как уже отмечалось, при ПРОИЗВОЛЬНОМ положении точки С на окружности, исключая точки А и В.
Следовательно, точка J описывает дугу окружности радиуса R√2 c центрами в точках D и E ( в зависимости от расположения точки С относительно диаметра АВ).
2) Медиана, проведенная к основанию равнобедренного треугольника, является и высотой, и биссектрисой, значит МС=АС/2=28, и тогда по Теореме Пифагора получим, что . ВМ=45.
3) Так как длина дуги по формуле ищется как , то отношение длин задает отношение центральных углов, которыми данные дуги определены, то есть один центральный угол будет равен 9х, а другой 11х. В сумме они дают 360 градусов, значит: 9х+11х=360, тогда 20х=360, х=18. Центральный угол, опирающийся на меньшую из дуг равен 9х=9*18=162 градуса.