1) Даны точки М(3; 5) и N(-6; -1).
Угловой коэффициент к прямой, проходящей через эти точки равен:
к = Δу/Δх = (-1-5)/(-6-3) = -6/-9 = 2/3.
Уравнение прямой будет у = (2/3)х + в.
Для определения величины в подставим в это уравнение координаты одной из точек, возьмём А.
5 = (2/3)*3 + в, отсюда в = 5 - 2 = 3.
ответ: уравнение у = (2/3)х + 3.
В общем виде 2х - 3у + 9 = 0 (после приведения к общему знаменателю).
2) Пусть точка N, лежащая на оси абсцисс
и равноудаленная от точек Р(-1; 3) и К(0; 2), имеет координаты N(x; 0).
Используем равенство расстояний точки N от P и K.
NP² = (-1 - x)² + (3 - 0)² = 1 + 2x + x² + 9 = 10 + 2x + x².
NK² = (0 - x)² + (2 - 0)² = x² + 4.
Приравняем 10 + 2x + x² = x² + 4,
2x = 4 - 10
x = -6/2 = -3.
ответ: точка N(-3; 0).
К этому решению во вложении дан поясняющий рисунок.
Из него видно, что есть второй решения задания с использованием срединного перпендикуляра к отрезку АВ.
Решение:
Уравнение прямой имеет вид:
ах+by+c=0 (1)
т.М а*(-2)+b*(-1)+c=0 -2a-b+c=0
т.N a*3+b*1+c=0 3a+b+c=0 (2)
Складываем два уравнения системы, получаем
-2a+3a-b+b+c+c=0
a+2c=0
a=-2c (3)
Подставим (3) в (2), получаем
3*(-2с)+b+c=0
-6c+b+c=0
-5c=-b
b=5c (4)
Подставим (3) и (4) в (1), получаем
-2сх+5су+с=0
с*(-2х+5у+1)=0
-2х+5у+1=0
2х-5у-1=0 - уравнение прямой.
2,
Напишите уравнение прямой, проходящей через точку M(3,-2) и параллельной оси ординат
Решение:
Вторая точка будет А(3;0)
Уравнение прямой имеет вид:
ах+by+c=0 (1)
т.М а*3+b*(-2)+c=0 3a-2b+c=0 3a=2b-c
т.N a*3+b*0+c=0 3a+c=0 3a=-c
3а=-с
а=-с/3 (2)
2b-c=-c
2b=-c+c
2b=0
b=0 (3)
Подставим (2) и (3) в (1), получим
(-с/3)*х+0*у+с=0
(-с/3)*х+с=0
с*(-1/3х+1)=0
-1/3х+1=0
Умножим на (-3), получаем
х-3=0
х=3 - уравнение прямой.
1) Даны точки М(3; 5) и N(-6; -1).
Угловой коэффициент к прямой, проходящей через эти точки равен:
к = Δу/Δх = (-1-5)/(-6-3) = -6/-9 = 2/3.
Уравнение прямой будет у = (2/3)х + в.
Для определения величины в подставим в это уравнение координаты одной из точек, возьмём А.
5 = (2/3)*3 + в, отсюда в = 5 - 2 = 3.
ответ: уравнение у = (2/3)х + 3.
В общем виде 2х - 3у + 9 = 0 (после приведения к общему знаменателю).
2) Пусть точка N, лежащая на оси абсцисс
и равноудаленная от точек Р(-1; 3) и К(0; 2), имеет координаты N(x; 0).
Используем равенство расстояний точки N от P и K.
NP² = (-1 - x)² + (3 - 0)² = 1 + 2x + x² + 9 = 10 + 2x + x².
NK² = (0 - x)² + (2 - 0)² = x² + 4.
Приравняем 10 + 2x + x² = x² + 4,
2x = 4 - 10
x = -6/2 = -3.
ответ: точка N(-3; 0).
К этому решению во вложении дан поясняющий рисунок.
Из него видно, что есть второй решения задания с использованием срединного перпендикуляра к отрезку АВ.