Пусть ABC} — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABDи BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Уравнение окружности имеет вид :
(x - x₀)² + (y - y₀)² = R² ,
где x₀, y₀ - координаты центра окружности, R - радиус окружности
(x - 1)² + (y + 2)² = 1 ⇒ Центр окружности О(1; -2), радиус R=1
При симметрии относительно оси OY радиус и координата у не изменятся, а координата х поменяет знак
(x + 1)² + (y + 2)² = 1 ⇒ Центр окружности O₁(-1; -2), радиус R=1
При симметрии относительно оси OX радиус и координата х не изменятся, а координата у поменяет знак
(x - 1)² + (y - 2)² = 1 ⇒ Центр окружности O₂(1; 2), радиус R=1
При последовательной симметрии относительно осей ОX и OY (центральная симметрия) радиус не изменится, а обе координаты поменяют знаки
(x + 1)² + (y - 2)² = 1 ⇒ Центр окружности O₃(-1; 2), радиус R=1