Решите в тетради: дано: δ авс (угол с прямой), сd высота 1.аd=25см, вd=4см. найдите высоту сd. 2.ав =25дм, вd=9дм. найдите высоту сd. 3.сd=14 м, аd=7м. найдите вd и ав. 4.вd в 4 раза меньше аd, сd= 32см. найдите вd, аd и ав. 5.сd =15см, аd на 16см больше вd. найдите аd, вd и ав.
РЕШЕНИЕ
сделаем построение по условию
AB = BC , так как ABCD -квадрат
Точка M делит сторону BC в отношении 1:2 -можно считать ,
что сторона ВС состоит из 3-х равных частей.
Точка E делит сторону AB в отношении 1:3 - можно считать ,
что сторона АВ состоит из 4-х равных частей.
Прямая CE пересекает стороны AM и MD треугольника AMD в точках К и L соответственно.
Дополнительное построение :
обозначим точку М1 - середина отрезка MC , тогда BM=MM1=M1C
проведем через точки М, М1 прямые m, m1 параллельные прямой CE
по теореме Фалеса :
параллельные прямые m,m1,CE отсекают на сторонах угла <EBC
пропорциональные отрезки
на стороне ВС : BM=MM1=M1C , значит на стороне BE тоже три равные части
обозначим для так как сторона АВ состоит из 4-х равных частей, то любая часть может быть
представлена в виде 3х , тогда BE=3x, тогда ЕА=9х, тогда отношение 1 : 3 = 3х : 9х = 3 : 9
рассмотрим угол <BAM
снова теорема Фалеса, снова параллельные прямые m,m1,CE , снова
пропорциональные отрезки на сторонах угла
MK : KA = 2x : 9x = 2 : 9 <это сторона АМ треугольника AMD
Дополнительное построение :
проведем прямую DM до пересечения с прямой АВ - точка Р
проведем прямую DN параллельную прямой CE
прямая DN отсекает на прямой АВ отрезок AN
CE || DN , EN || CD
NECD - параллелограмм , так как противоположные стороны попарно параллельны
следовательно BE=AN , тогда BE : EN = 1 : 4
т. е. отрезок BN состоит из 5-и равных частей.
тогда BE=3x, тогда ЕN=12х, тогда отношение 1 : 4 = 3х : 12х = 3 : 12
рассмотрим угол <NPD
снова теорема Фалеса, снова параллельные прямые m,m1,CE,DN , снова
пропорциональные отрезки на сторонах угла
ML : LD = 2x : 12x = 2 : 12 = 1 : 6 <это сторона МD треугольника AMD
ОТВЕТ
для стороны АМ отношение 2 : 9
для стороны МD отношение 1 : 6
Подробнее - на -
Объяснение:
ответ: а) 6/√5 (ед. длины). б) 108/√5=21,6√5 (ед. площади)
Объяснение: Центр окружности, вписанной в треугольник, лежит на биссектрисе его угла.⇒ АН - биссектриса угла ВАD, О - центр окружности. ОК и ОЕ - радиусы, проведенные к точкам касания. По свойству отрезков касательных, проведенных к окружности из одной точки. АК=АЕ; DE=DH; FK=FH
Примем АК=АЕ равным х. Тогда ЕD=DH=9-х.
а) Рассмотрим рисунок приложения. Угол AFD=∠CDF (накрестлежащие при FA||CD и секущей FD) Но ∠CDF=∠ADF (DF- биссектриса ) ⇒ ∠АFD=∠FDA. ⇒ ∆ FAD – равнобедренный и AF=AD=9.
АН - биссектриса угла равнобедренного треугольника, ⇒ АН – его высота и медиана ( свойство). ⇒ FН=НD=9-х
Аналогично в ∆ КАЕ биссектриса АМ равнобедренного ∆ АКЕ - медиана и высота. ⇒ КМ=МК=4:2=2.
Прямоугольные ⊿ МАЕ и ⊿ НAD подобны по общему острому углу при А. Из подобия следует отношение DH:ЕМ=DA:ЕА.
т.е. (9-х):2=9:х., откуда получаем х²-9х+18=0. По т.Виета х₁+х₂=-(-9)=9; х₁•х₂=18 ⇒ х₁=3; х₂=6
По условию АЕ< AD, поэтому АЕ=3, ED=6
Из ⊿ АНD по т.Пифагора АН=√(AD*-DH*)=√(81-36)=3√5
⊿ АОЕ и ⊿ АDH подобны по общему углу при вершине А, из чего следует ОЕ:DH=AE:AH ⇒ r=AE•DH:AH =3•6:3√5.=6/√5.
б) При условии, что окружность касается стороны BC параллелограмма, диаметр РЕ окружности, вписанной в угол ВАD, будет высотой параллелограмма. S=h•a=2r•AD=(12/√5)•9=108/√5. = 21,6√5 (ед. площади)