S(пп) = 122 см²
Объяснение:
Дано:
a = 4 cm
c = 3 cm
Площадь боковой поверхности: S(бп) = 66 cm²
Найти:
Площадь полной поверхности: S(пп) = ?
Для начала найдём вторую сторону основания b:
Для этого воспользуемся формулой:
S(бп) = P(осн)*с, где P(осн) - периметр основания = 2(a+b), ⇒
S(бп) = 2(a+b)*c
подставим имеющиеся значения:
66 = 2(4+b)*3
66 = 6(4+b)
66 = 24 + 6b
6b = 66-24
6b = 42
b = 42/6
b = 7 см
Площадь полной поверхности прямоугольного параллелепипеда S(пп) определяется по формуле:
S(пп) = 2(ab+bc+ac)
S(пп) = 2(4*7 + 7*3 + 4*3)
S(пп) = 2(28+21+12)
S(пп) = 2*61
0,5 мм
Пусть толщина буквы - х мм.
Буква Н состоит из трёх прямоугольников: двух одинаковых вертикально расположенных и одного горизонтально расположенного.
Тогда площадь вертикально расположенных прямоугольников : по 9х мм² каждый.
Площадь горизонтально расположенного прямоугольника: (4-2х)×х мм².
Так как площадь буквы составляет 10,5 мм², составляем уравнение:
9х+9х+(4-2х)×х=10,5
18х+4х-2х²-10,5=0
-2х²+22х-10,5=0
х²-11х+5,25=0
Получили, что толщина буквы равна 0,5 мм либо 10,5 мм.
10,5 мм не подходит по условию, т.к. в этом случае ширина и длина самой буквы будет больше, чем 4мм и 9мм соответственно.
ответ: толщина буквы 0,5 мм
S(пп) = 122 см²
Объяснение:
Дано:
a = 4 cm
c = 3 cm
Площадь боковой поверхности: S(бп) = 66 cm²
Найти:
Площадь полной поверхности: S(пп) = ?
Для начала найдём вторую сторону основания b:
Для этого воспользуемся формулой:
S(бп) = P(осн)*с, где P(осн) - периметр основания = 2(a+b), ⇒
S(бп) = 2(a+b)*c
подставим имеющиеся значения:
66 = 2(4+b)*3
66 = 6(4+b)
66 = 24 + 6b
6b = 66-24
6b = 42
b = 42/6
b = 7 см
Площадь полной поверхности прямоугольного параллелепипеда S(пп) определяется по формуле:
S(пп) = 2(ab+bc+ac)
подставим имеющиеся значения:
S(пп) = 2(4*7 + 7*3 + 4*3)
S(пп) = 2(28+21+12)
S(пп) = 2*61
S(пп) = 122 см²
0,5 мм
Объяснение:
Пусть толщина буквы - х мм.
Буква Н состоит из трёх прямоугольников: двух одинаковых вертикально расположенных и одного горизонтально расположенного.
Площадь прямоугольника вычисляется по формуле: S=a×b, где а - длина, b - ширина.Тогда площадь вертикально расположенных прямоугольников : по 9х мм² каждый.
Площадь горизонтально расположенного прямоугольника: (4-2х)×х мм².
Так как площадь буквы составляет 10,5 мм², составляем уравнение:
9х+9х+(4-2х)×х=10,5
18х+4х-2х²-10,5=0
-2х²+22х-10,5=0
х²-11х+5,25=0
Получили, что толщина буквы равна 0,5 мм либо 10,5 мм.
10,5 мм не подходит по условию, т.к. в этом случае ширина и длина самой буквы будет больше, чем 4мм и 9мм соответственно.
ответ: толщина буквы 0,5 мм