В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
1234567890dd
1234567890dd
10.05.2022 17:13 •  Геометрия

Решите вариант 2 кто знает 1 напишите и первый ​

Показать ответ
Ответ:
Петр1234561
Петр1234561
04.04.2020 22:37
№1
1) |_EAD=|_BEA-накрест лежащие при параллельных прямых BC и AD, следовательно |_BAE=|_BEA,так как треугольник BEA-равнобедренный (по условию), и углы при основании равны по 30 градусов.
2) BAE=180-(30+30)=180-60=120 градусов
3) |_В параллелограмме противоположные углы равны, значит |_D=|_B=120 градусов
4) |_C=30+30=60 градусов
ответ:|_C=60 градусов; |_D=120 градусов
№2
1) P(параллелограмма)=(AB+BC)*2
2) BC=BK+KC=18+10=28
3)AB=BK, так как биссектриса делит угол на два, и |_KAD=|_BAK=BKA, так как треугольник ABK-равнобедренный
4) Значит AB=BK=18
5) P=(28+18)*2=92
ответ:92
0,0(0 оценок)
Ответ:
Alexandra335
Alexandra335
27.02.2022 09:22

Параллельность прямой и плоскости

В пространстве прямая может лежать в плоскости, а может и не лежать в ней. При этом, если прямая не лежит в плоскости, то по аксиоме прямой и плоскости она не может иметь с этой плоскостью более одной общей точки. Это означает, что плоскость и не лежащая в ней прямая либо имеют одну общую точку, либо не имеют ни одной общей точки. Если прямая и плоскость имеют ровно одну общую точку, то они пересекаются. А если прямая и плоскость не имеют ни одной общей точки?

Определение. Прямая и плоскость, не имеющие общей точки, называются параллельными.

Если прямая a и плоскость α параллельны, то записывают a ‖ α или α ‖ a. При этом говорят, что прямая a параллельна плоскости α или плоскость α параллельна прямой a.

При решении стереометрических задач обоснование параллельности прямой и плоскости при только одного определения их параллельности часто затруднительно и не приводит к желаемому результату. В таких случаях пользуются признаками параллельности прямой и плоскости, один из которых выражает следующая теорема.

Теорема 9 (признак параллельности прямой и плоскости). Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то эти прямая и плоскость параллельны.

Рис. 50

Дано: b ⊂ α, a ‖ b, a ⊄ α (рис. 50).

Доказать: a ‖ α.

Доказательство. Так как прямая b лежит в плоскости α, то (по теореме о двух параллельных прямых, одна из которых пересекает плоскость (т. 5)) прямая a, параллельная прямой b, не может пересекать плоскость α; а так как прямая a по условию не лежит в плоскости α, то прямая a параллельна плоскости α. Теорема доказана. ▼

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота