Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30° диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15° проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной) Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15° (ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
Итак, поехали. см. рисунок. Там сделали допостроения и обозначения. СВ=х АС=х-7 по т. Пифагора (х-7)²+х²=13² отсюда х=12 (отрицательное значение ж не подходит) х-7=5 Катеты будут 5 и 12.Напишем их зеленым на рисунке, чтоб удобнее было. А теперь самое интересное. Центр опис.окр. лежит на серединных перпендикулярах. Что и обозначено. Т.е. СМ=12/2=6 Дальше, ∠СОК - центральный для ∠СВК, значит он = 2α, тогда угол СОН в 2 раза меньше ( треугольник СОК равнобедр. с высотой ОН) и равен α. Обозначим зеленым. Тогда ∠ОСМ=90-α-45=45-α теперь из Δ ОСМ имеем R=CM/cos(45-α) R=6/cos(45-α) подставляя формулу косинуса разности получаем cos(45-α)=cos45cosα+sin45sinα=√2/2(cosα+sinα)
но из первоначального треугольника, когда нашли его катеты, имеем cosα=12/13 sinα=5/13 a cosα+sinα=12/13+5/13=17/13 cos(45-α)=17√2/26
Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30°
диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15°
проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной)
Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15°
(ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
S=p*r, где p-полупериметр
p=4*AB/2=4*4k/2=8k
S=8k*k=8k²
ответ: 8k²
см. рисунок. Там сделали допостроения и обозначения.
СВ=х
АС=х-7
по т. Пифагора (х-7)²+х²=13²
отсюда х=12 (отрицательное значение ж не подходит)
х-7=5
Катеты будут 5 и 12.Напишем их зеленым на рисунке, чтоб удобнее было.
А теперь самое интересное.
Центр опис.окр. лежит на серединных перпендикулярах. Что и обозначено. Т.е. СМ=12/2=6
Дальше, ∠СОК - центральный для ∠СВК, значит он = 2α, тогда угол СОН в 2 раза меньше ( треугольник СОК равнобедр. с высотой ОН) и равен α. Обозначим зеленым.
Тогда ∠ОСМ=90-α-45=45-α
теперь из Δ ОСМ имеем R=CM/cos(45-α)
R=6/cos(45-α)
подставляя формулу косинуса разности получаем
cos(45-α)=cos45cosα+sin45sinα=√2/2(cosα+sinα)
но из первоначального треугольника, когда нашли его катеты, имеем
cosα=12/13
sinα=5/13
a cosα+sinα=12/13+5/13=17/13
cos(45-α)=17√2/26
и R=6/(17√2/26)=78√2/17
вроде так.