1)Теорема о неравенстве треугольника: Каждая сторона треугольника меньше суммы двух других сторон. Следствие: Для любых трех точек А, В и С, не лежащих на одной прямой справедливы неравенства: АВ<АС+ВС, АС<АВ+ВС, ВС<АС+АВ. Теорема о соотношении между сторонами и углами треугольника: В треугольнике:1) Напротив большего угла лежит большая сторона и обратно 2) напротив большей стороны лежит больший угол. Следствия: 1)В прямоугольном треугольнике гипотенуза всегда больше катета 2)Если в треугольнике два угла равны, то он равнобедренный(признак равнобедренного треугольника).
2. Раствором циркуля 28 мм чертим окружность с центром в точке О.
3. Точку пересечения окружности и отрезка ОМ обозначим К.
4. Из точки К раствром циркуля, равным радиусу окружности 28 мм, отмечаем на окружности точку Т.
5.Соединим эту точку с М. Этот отрезок - касательная из М к окружности.
---------------------
Доказательство:
В получившемся треугольнике ТОК все стороны равны. ∠ ТОК равен 60°.
Угол между касательной и хордой равен половине градусной меры дуги, стягиваемой хордой. Следовательно, угол КТМ равен половине градусной меры дуги ТК, которая равна 60°, и потому ∠ КТМ= 30°.
Отсюда ∠ОТМ=∠ОТК+КТМ=90°, а прямая МТ - касательная к окружности, что и требовалось при построении.
Каждая сторона треугольника меньше суммы двух других сторон.
Следствие:
Для любых трех точек А, В и С, не лежащих на одной прямой справедливы неравенства: АВ<АС+ВС, АС<АВ+ВС, ВС<АС+АВ.
Теорема о соотношении между сторонами и углами треугольника:
В треугольнике:1) Напротив большего угла лежит большая сторона и обратно 2) напротив большей стороны лежит больший угол.
Следствия:
1)В прямоугольном треугольнике гипотенуза всегда больше катета
2)Если в треугольнике два угла равны, то он равнобедренный(признак равнобедренного треугольника).
1. От точки М откладываем отрезок МО=7 см
2. Раствором циркуля 28 мм чертим окружность с центром в точке О.
3. Точку пересечения окружности и отрезка ОМ обозначим К.
4. Из точки К раствром циркуля, равным радиусу окружности 28 мм, отмечаем на окружности точку Т.
5.Соединим эту точку с М. Этот отрезок - касательная из М к окружности.
---------------------
Доказательство:
В получившемся треугольнике ТОК все стороны равны. ∠ ТОК равен 60°.
Угол между касательной и хордой равен половине градусной меры дуги, стягиваемой хордой. Следовательно, угол КТМ равен половине градусной меры дуги ТК, которая равна 60°, и потому ∠ КТМ= 30°.
Отсюда ∠ОТМ=∠ОТК+КТМ=90°, а прямая МТ - касательная к окружности, что и требовалось при построении.