50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
1. 75°; 75°; 30°.
2. 52,5°; 52,5°; 75°.
Объяснение:
Задача имеет два решения
1.
Угол А при основании АС равнобедренного треугольника АВС
∠А = 75°
Второй угол при основании АС также равен 75°
∠С = 75°
∠А + ∠С = 75° · 2 = 150°
По свойству углов треугольника
∠А +∠В + ∠С = 180°
∠В = 180° - (∠А + ∠С)
∠В = 180° - 150° = 30°
2.
Угол В при вершине равнобедренного треугольника равен
∠В = 75°
По свойству углов равнобедренного треугольника углы при основании такого треугольника равны
∠А = ∠С
По свойству углов треугольника
∠А +∠В + ∠С = 180°
2 ∠А + ∠В = 180°
2 ∠А = 180° - ∠В
∠А = ∠С = 0,5 (180° - ∠В) = 0,5(180° - 75°) = 52,5°
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?