Стороны Δ АВС равны АС=12 м, ВС=16 м и АВ=20 м, СН - высота.
Для данных величин выполняется равенство:
20² = 12² + 16²
400 = 144 + 256
400 = 400
тогда по теореме, обратной теореме Пифагора, данный треугольник - прямоугольный. Большая сторона АВ - гопотенуза = 20, .
Тогда высота СН , проведенная из вершины прямого угла С, опущена на гипотенузу АВ и делит треугольник на два подобных треугольника, каждый из которых подобен Δ АВС.
Обозначим АВ х см,ВС у см,тогда по условию у-х=4,зн. у=4+х.ВД=12 см,АС=14см из ΔАВД и ΔАВС по теореме косинусов (учитывая,что угол В =180 -уголА и то ,что косинус тупого угла отрицательный ) запишем :12²=х²+у²-2xy соs A, 14²=x²+y²+2xycosA сложим эти равенства 12²+14²=2х²+2у²,тк у=4+х,то 144+196=2х²+2(4+х)² 2х²+2(16+8х+х²)=340 (делим на два х²+16+8х+х²=170 2х²+8х-154=0 (делим на два) х²+4х-77=0 по Виета : х1+х2= -4 х1·х2= -77,значит х1=-11,х2=7 -11 не подходит, значит одна сторона 7 см,другая (у=4+х) 11 см, а периметр равен (7+11)·2=36 см
Стороны Δ АВС равны АС=12 м, ВС=16 м и АВ=20 м, СН - высота.
Для данных величин выполняется равенство:
20² = 12² + 16²
400 = 144 + 256
400 = 400
тогда по теореме, обратной теореме Пифагора, данный треугольник - прямоугольный. Большая сторона АВ - гопотенуза = 20, .
Тогда высота СН , проведенная из вершины прямого угла С, опущена на гипотенузу АВ и делит треугольник на два подобных треугольника, каждый из которых подобен Δ АВС.
Рассмотрим подобие треугольников АСН и АВС:
СН/СВ = АС/АВ
СН/16 = 12/20
СН = 16*12/20
СН = 48/5
СН = 9,6
ответ: высота равна 9,6 м.
У моей сестры такая же задача)
из ΔАВД и ΔАВС по теореме косинусов (учитывая,что угол В =180 -уголА и то ,что косинус тупого угла отрицательный ) запишем :12²=х²+у²-2xy соs A, 14²=x²+y²+2xycosA сложим эти равенства 12²+14²=2х²+2у²,тк у=4+х,то 144+196=2х²+2(4+х)²
2х²+2(16+8х+х²)=340 (делим на два
х²+16+8х+х²=170
2х²+8х-154=0 (делим на два)
х²+4х-77=0 по Виета : х1+х2= -4
х1·х2= -77,значит х1=-11,х2=7
-11 не подходит, значит одна сторона 7 см,другая (у=4+х) 11 см, а периметр равен (7+11)·2=36 см