В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
сопп
сопп
19.08.2020 16:21 •  Геометрия

Решите , ) высоты bb1 и cc1 остроугольного треугольника abc пересекаются в точке h. а) докажите, что ∠ahb1 = ∠acb. б) найдите bc, если ah = 21 и ∠bac = 30°.

Показать ответ
Ответ:
Kajdit
Kajdit
24.09.2020 11:33
А) у прямоугольных треугольников AHB1 и AA1C есть общий угол A1AC; значит равны и вторые углы. (AA1 - третья высота)
б) если построить на AH окружность, как на диаметре, то точки C1 и B1 попадут на неё из за того, что углы AC1H и AB1H прямые. Поэтому AH - диаметр окружности, описанной вокруг треугольника AB1C1;
Отсюда по теореме синусов B1C1 = AH*sin(∠BAC) = 21/2;
Однако :) стороны треугольника AB1C1 можно выразить через стороны треугольника ABC так
AB1 = AB*cos(∠BAC); AC1 = AC*cos(∠BAC);
поскольку ∠BAC общий, треугольники подобны с коэффициентом подобия cos(∠BAC); то есть BC*cos(∠BAC) = B1C1 = AH*sin(∠BAC);
BC = AH*tg(∠BAC) = 21/√3 = 7√3;
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота