Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30° диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15° проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной) Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15° (ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
Один.
2. Из каких точек состоит отрезок AB?
Из всех точек прямой, расположенных между точками А и В, и самих точек А и В.
3. Какие два отрезка называют равными?
Которые можно совместить наложением.
4. Какие длины имеют равные отрезки?
Равные отрезки имеют равные длины.
5. Что можно сказать об отрезках, имеющих равные длины?
Что они равны.
6. Сформулируйте основное свойство длины отрезка.
Длина отрезка равна сумме длин его частей.
7. Можно ли любой отрезок выбрать в качестве единичного?
Да, можно.
8. Что называют расстоянием между двумя точками?
Длину отрезка, с концами в этих точках.
9. Чему равно расстояние между двумя совпадающими точками?
Нулю.
10. Какую точку называют серединой отрезка AB?
Точку, которая делит его на два равных отрезка.
Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30°
диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15°
проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной)
Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15°
(ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
S=p*r, где p-полупериметр
p=4*AB/2=4*4k/2=8k
S=8k*k=8k²
ответ: 8k²