Пусть диагонали будут АВ, СД. О- точка пересечения Воспользуемся свойствами диагоналей ромба "Диагонали в точке пересечения делятся пополам" и "Диагонали ромба перпендикулярны (образуют прямой угол)" Из этого следует , что диагонали делят ромб на 4 прямоугольных треугольника с катетами равными половине диагоналей. Первый катет такого треугольника = 10/2 =5 см Второй = (10√3)/2= 5√3см По т. Пифагора найдем гипотенузу(сторону ромба) с²=5²+(5√3)² с²=25+75 с=√(100) с=10см Вспомним свойство прямоугольного треугольника " напротив угла в 30* лежит катет равный половине гипотенузы" катет в 5 см равен половине гипотенузы 10 см. Свойство острых углов в прямоугольном треугольнике - их сумма равна 90* Отсюда найдем второй острый угол 90*-30*=60* Также диагонали ромба являются биссектрисами углов. Это значит, что найденные углы равны половине градусных мер углов ромба . Первый угол =30*2=60* Второй угол=60*2=120* Ромб имеет по паре равных углов. ответ: 60*,60*,120*,120*.
Воспользуемся свойствами диагоналей ромба
"Диагонали в точке пересечения делятся пополам"
и
"Диагонали ромба перпендикулярны (образуют прямой угол)"
Из этого следует , что диагонали делят ромб на 4 прямоугольных треугольника с катетами равными половине диагоналей.
Первый катет такого треугольника = 10/2 =5 см
Второй = (10√3)/2= 5√3см
По т. Пифагора найдем гипотенузу(сторону ромба)
с²=5²+(5√3)²
с²=25+75
с=√(100)
с=10см
Вспомним свойство прямоугольного треугольника
" напротив угла в 30* лежит катет равный половине гипотенузы"
катет в 5 см равен половине гипотенузы 10 см.
Свойство острых углов в прямоугольном треугольнике - их сумма равна 90*
Отсюда найдем второй острый угол
90*-30*=60*
Также диагонали ромба являются биссектрисами углов.
Это значит, что найденные углы равны половине градусных мер углов ромба .
Первый угол =30*2=60*
Второй угол=60*2=120*
Ромб имеет по паре равных углов.
ответ: 60*,60*,120*,120*.
а) сначала мысленно разделим фигуру на две части.
получаем две фигуры: квадрат (S₁) и прямоугольник (S₂), общая площадь - S
Дано:
а₁ = 8 м
а₂ = 5 м
b₁ = 8 м
b₂ = 3 м
Найти: S.
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 8*8 = 64 (м²)
4) S₂ = a₂b₂
5) S₂ = 5*3 = 15 (м²)
6) S = 64+15 = 79 (м²) - площадь всей фигуры
ответ: S = 79 м²
б) сначала найдем площадь большей фигуры, затем меньшей и вычтем.
Дано:
а₁ = 40 см
а₂ = 14 см
b₁ = 56 см
b₂ = 20 см
Найти: S
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 40*56 = 2240 (см²)
4) S₂ = a₂b₂
5) S₂ = 14*20 = 280 (см²)
6) S = 2240+280 = 2520 (см²) - площадь всей фигуры
ответ: S = 2520 см²