Многоугольник - часть плоскости, ограниченная замкнутой ломаной без самопересечений, любые два соседних звена которой не лежат на одной прямой.
Вершины ломаной называются вершинами многоугольника, стороны ломаной - сторонами многоугольника.
Диагональ многоугольника - отрезок, соединяющий любые две несоседние вершины.
Периметр многоугольника - сумма длин всех его сторон.
Выпуклый многоугольник - это многоугольник, лежащий по одну сторону от любой прямой, содержащей его сторону.
Формула суммы углов выпуклого многоугольника:
180°(n - 2)
Вывод формулы:
Отметим произвольную точку О внутри выпуклого многоугольника и соединим ее с вершинами. Получили n треугольников. Сумма углов одного треугольника равна 180°, а всех треугольников 180°·n.
Угол при вершине О составляет 360°. Отнимем его от суммы углов треугольников и получим сумму углов выпуклого многоугольника:
Утверждения,которые выводятся непосредственно из аксиом или теорем,называются следствиями.
Если прямая пересекает одну из двух параллельных прямых,то она пересекает и другую.
Доказательство: Пусть прямыеa и параллельны и прямая с пересекает прямую а в точке М.Докажем,что прямая спересекает и прямую b.Если бы прямая с не пересекала прямуюb, то через точку М проходили бы две прямые(прямые а ис),параллельные прямой b.Но это противоречит аксиоме параллельных прямых , и, значит, прямая с пересекает прямую b
Многоугольник - часть плоскости, ограниченная замкнутой ломаной без самопересечений, любые два соседних звена которой не лежат на одной прямой.
Вершины ломаной называются вершинами многоугольника, стороны ломаной - сторонами многоугольника.
Диагональ многоугольника - отрезок, соединяющий любые две несоседние вершины.
Периметр многоугольника - сумма длин всех его сторон.
Выпуклый многоугольник - это многоугольник, лежащий по одну сторону от любой прямой, содержащей его сторону.
Формула суммы углов выпуклого многоугольника:
180°(n - 2)
Вывод формулы:
Отметим произвольную точку О внутри выпуклого многоугольника и соединим ее с вершинами. Получили n треугольников. Сумма углов одного треугольника равна 180°, а всех треугольников 180°·n.
Угол при вершине О составляет 360°. Отнимем его от суммы углов треугольников и получим сумму углов выпуклого многоугольника:
180°·n - 360° = 180°(n - 2)
Если прямая пересекает одну из двух параллельных прямых,то она пересекает и другую.
Доказательство: Пусть прямыеa и параллельны и прямая с пересекает прямую а в точке М.Докажем,что прямая спересекает и прямую b.Если бы прямая с не пересекала прямуюb, то через точку М проходили бы две прямые(прямые а ис),параллельные прямой b.Но это противоречит аксиоме параллельных прямых , и, значит, прямая с пересекает прямую b