Поскольку наклонные, являющиеся расстояниями от М до сторон тр-ка, одинаковые, то и проекции их на плоскость треугольника одинаковые и равны радиусу вписанной в треугольник окружности.
Если точка равноудалена от осей координат, то ее координаты равны.
Эту точку можно рассматривать как центр окружности, которая проходит через точку с координатами (3 ; 6) и касается осей координат. Уравнение окружности: (x - x₀)² + (y - y₀)² = R² здесь х и у - координаты любой точки окружности, х₀ и у₀ - координаты центра (и координаты искомой точки), R - радиус окружности.
Так искомая точка равноудалена от осей координат и окружность касается осей, то x₀ = y₀ = R
Подставим в уравнение окружности вместо х и у данные координаты точки (3 ; 6) и x₀ вместо у₀ и R: (3 - x₀)² + (6 - x₀)² = x₀² 9 - 6x₀ + x₀² + 36 - 12x₀ + x₀² - x₀² = 0 x₀² - 18x₀ + 45 = 0 x₀ = 3 или x₀ = 15 по теореме Виета
Оба значения подходят (иллюстрация второго случая - на втором рисунке), значит координаты искомой точки (3 ; 3) или (15 ; 15)
Поскольку наклонные, являющиеся расстояниями от М до сторон тр-ка, одинаковые, то и проекции их на плоскость треугольника одинаковые и равны радиусу вписанной в треугольник окружности.
r = √((р - а)(р - в)(р - с)/р
Пусть а = 25, в = 39, с = 56, тогда полупериметр
р = 0,5·(25 + 39 + 56) = 0,5·120 = 60
r = √((60 - 25)(60 - 39)(60 - 56)/60) = √(35·21·4/60 = √49 = 7
Растояние Н от точки М до плоскости тр-ка, радиус r вписанной окружности и любая из наклонных L = 25 образуют прямоугольный тр-к с гипотенузой L.
По теореме Пифагора найдём Н
Н² = L² - r² = 25² - 7² = 625 - 49 = 576
Н = 24(см)
Эту точку можно рассматривать как центр окружности, которая проходит через точку с координатами (3 ; 6) и касается осей координат.
Уравнение окружности:
(x - x₀)² + (y - y₀)² = R²
здесь х и у - координаты любой точки окружности,
х₀ и у₀ - координаты центра (и координаты искомой точки),
R - радиус окружности.
Так искомая точка равноудалена от осей координат и окружность касается осей, то
x₀ = y₀ = R
Подставим в уравнение окружности вместо х и у данные координаты точки (3 ; 6) и x₀ вместо у₀ и R:
(3 - x₀)² + (6 - x₀)² = x₀²
9 - 6x₀ + x₀² + 36 - 12x₀ + x₀² - x₀² = 0
x₀² - 18x₀ + 45 = 0
x₀ = 3 или x₀ = 15 по теореме Виета
Оба значения подходят (иллюстрация второго случая - на втором рисунке), значит координаты искомой точки
(3 ; 3) или (15 ; 15)