В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mathmatic2882
mathmatic2882
04.08.2022 19:52 •  Геометрия

решите задачки, как можно быстрее, Геометрия умоляю​

Показать ответ
Ответ:
plalisa
plalisa
10.04.2023 19:21
Проекция это когда опускаешь перпендикуляр из точки конца отрезка
ты проводишь высоту из вершины В к основанию АС и находишь отрезочки на которые делится основание этой высотой
а еще нужно заметить что треугольник АВС прямоугольный
и можно найти АС 
АС в квадрате = 20*20+15*15
ас в квадрате=625
Ас =25
вот есть у тебя треугольник
там есть подобные треугольники
маленький треугольник подобен большому
я возьму что точка где будет заканчиваться проекция Н
вот получается что треугольник АВН подобен АВС
и можно использовать отношение сходственных сторон 20\25=х\15
х это АН
потом из 25 вычитаешь полученное и все)
0,0(0 оценок)
Ответ:
Периметр треугольника равен 24. Докажите что расстояние от любой точки плоскости, до хотя бы одной из его вершин больше 4

Решение может быть основано на одном из основных свойств треугольника:
Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c,  a > b – c;  и так же - для каждой стороны любого треугольника.
Сумма двух сторон данного треугольника  периметра 24 не может быть меньше 12,11111, иначе треугольник не получится.
Поэтому расстояние от любой точки плоскости - независимо от того, вне или внутри треугольника точка-  до хотя бы одной из вершин этого треугольника будет больше половины длины большей его стороны, т.е. больше 4.

Другой доказательства.
Рассмотрим случаи, когда эта точка равноудалена от каждой из вершин, т.е. находится в центре описанной окружности.
Тогда при ее смещении расстояние от нее до хотя бы одной из вершин треугольника будет больше радиуса описанной окружности. 
У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.
Случай1 - равносторонний треугольник АВС. 
Р=24, 
а=24:3=8.
Возьмем для рассмотрения точку Е - центр описанной окружности вокруг треугольника АВС.
 Расстояние от нее до каждой из вершин является одинаковым.
Высота ( медиана, биссектриса ) равна 
h=a*sin(60)
R=ВЕ=СЕ=СА=h:3*2=2*{(8√3):2}:3=4,6188, 
т.е. больше 4. 
Естественно предположить, что любая другая точка, расположенная внутри АВС, (М, Р, К) будет хотя бы от одной из вершин расположена на расстоянии большем, чем R.
Очевидно, что в случае, когда данная точка находится вне плоскости треугольника, она тем более будет находиться на расстоянии, большем, чем радиус  описанной окружности, т.е. большем, чем 4.

Случай 2 - произвольный треугольник АВС.
Пусть длина его сторон 9, 8 и 7. Центр описанной вокру него окружности находится в точке пересечения срединных перпендикуляров. 
R=abc:4S
Площадь данного  треугольника, найденная по формуле Герона, равна  приблизительно 26, 833 
R=≈4,695, и это больше, чем 4.
Изменение места расположения точки Е приводит к тому, что расстояние до какой-либо из вершин будет больше R, и, естественно, больше 4.
  Для прямоугольного треугольника равное расстояние до вершин будет R=5
Соответственно, если точка Е будет расположена в другом месте плоскости, то и расстояние от нее до хотя бы одной из вершин будет больше. 
ответ:
Расстояние от любой точки плоскости  до хотя бы одной из его вершин треугольника с периметром 24  больше 4, что и требовалось доказать. 
[email protected] 
Периметр треугольника равен 24, докажите что расстояние от любой точки плоскости,до хотя бы одной из
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота