В треугольнике ABC, AC=CB=8, угол ACB= 120 градусов. Точка M удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника ABC.
Найти угол между MA и плоскостью треугольника ABC
Точка M находится на равном расстоянии от вершин треугольника ABC, следовательно, наклонные МА, МС и МВ равны, их проекции также равны, а М проецируется в центр О описанной вокруг ∆ АВС окружности.
ОА=ОВ=ОС=R
Углы при А и В равны, как углы при основании равнобедренного треугольника.
∠А=∠В=(180º-120º):2=30º
По т.синусов
R=(AC:sin 30º):2=(8:0,5):2=8 см
∆ МOA - прямоугольный, МО=12, ОВ=8, и tg ∠MAO=12/8=1,5
1) Радиус окружности, описанной около правильного шестиугольника, равен стороне этого шестиугольника. Тогда длина дуги окружности, стягиваемой стороной данного шестиугольника равна L=2πR/6 = 2π9/6=3π. ответ: L=3π. 2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины. причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π ответ: L=28π. 3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°. Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF. Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°. Что и требовалось доказать. Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).
В треугольнике ABC, AC=CB=8, угол ACB= 120 градусов. Точка M удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника ABC.
Найти угол между MA и плоскостью треугольника ABC
Точка M находится на равном расстоянии от вершин треугольника ABC, следовательно, наклонные МА, МС и МВ равны, их проекции также равны, а М проецируется в центр О описанной вокруг ∆ АВС окружности.
ОА=ОВ=ОС=R
Углы при А и В равны, как углы при основании равнобедренного треугольника.
∠А=∠В=(180º-120º):2=30º
По т.синусов
R=(AC:sin 30º):2=(8:0,5):2=8 см
∆ МOA - прямоугольный, МО=12, ОВ=8, и tg ∠MAO=12/8=1,5
∠MAO = ≈56º20'
L=2πR/6 = 2π9/6=3π.
ответ: L=3π.
2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины.
причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π
ответ: L=28π.
3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°.
Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF.
Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°.
Что и требовалось доказать.
Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).