Решите задачу: определите оптическую силу (Д) линзы, если она дала четырёхкратное увеличение (Г) предмета, расположенного от неё на расстоянии (d), равном 2 см (перевидите в м). Используем формулы: оптической силы, увеличения и уравнение тонкой линзы
1. а) Наклонные КА,КВ,КС и КD равны (дано), значит равны и их проекции на плоскость АВСD. Следовательно, АО=ВО=СО=DO => точка О - точка пересечения диагоналей квадрата, то есть его центр. Что и требовалось доказать.
б) По Пифагору АС=√(AD²+DC²) = √144 =12. ОС = 6.
КО=√(КС²-ОC²) = √(100-36) = 8.
2. Проекция точки М на плоскость АВС - центр О вписанной в треугольник АВС окружности, так как проекции равных наклонных равны. Радиус вписанной окружности найдем по формуле: r = S/p, где S - площадь треугольника, а р - его полупериметр. У нас р = (3√2+3√2+2√2)/2 = 4√2.
По формуле Герона S = √(p*(p-a)(p-b)(p-c). У нас
S= √(4√2*√2*√2*2√2) = 4√2. Тогда r = 4√2/4√2 = 1.
В прямоугольном треугольнике СОН катет ОН=1, катет СН=АС/2 = √2. Тогда по Пифагору ОС = √(1+2) = √3.
Тангенс угла МСО (а это и есть искомый угол, так как угол между наклонной прямой и плоскостью равен углу между этой наклонной и ее проекцией на плоскость) равен отношению противолежащего катета к прилежащему:
МО/ОС = 1/√3. А это угол, равный 60°.
ответ: угол наклона прямой МС к плоскости треугольника равен 60°
РЕШЕНИЕ:
• Рассмотрим тр. АВD:
BP - биссектриса и высота
Значит, тр. ABD - равнобедренный , АB = BD , АР = PD = AD/2 = 4/2 = 2
• Проведём из точки С прямую, параллельную прямой AD до пересечения с прямой АВ в точке К.
• Отсюда BD = DC = AB = AK =>
тр. ВСK - равнобедренный , ВК = ВС ,
ВР перпендикулярен АD
Соответственно, ВН перпендикулярен КС
ВН - биссектриса, медиана , высота.
• Медианы ВН и АС тр. ВСК пересекаются в точке Е =>
Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 , считая от вершины.
ВЕ : ЕН = 2 : 1 .
ЕН = ВЕ / 2 = 4 / 2 = 2
ВН = ВЕ + ЕН = 4 + 2 = 6
Но ВР = РН = ВН / 2 = 6 / 2 = 3
РЕ = ВЕ - ВР = 4 - 3 = 1
• Рассмотрим тр. АВР (угол АРВ = 90°):
По теореме Пифагора:
АВ^2 = АР^2 + ВР^2
АВ^2 = 2^2 + 3^2 = 4 + 9 = 13
АВ = V13
Соответственно, ВС = 2•АВ = 2V13
• Рассмотрим тр. АРЕ (угол АРЕ = 90°):
По теореме Пифагора:
АЕ^2 = АР^2 + РЕ^2
АЕ^2 = 2^2 + 1^2 = 4 + 1 = 5
АЕ = V5
• По свойству медианы:
ЕС = 2 • АЕ = 2V5
АС = АЕ + ЕС = V5 + 2V5 = 3V5
В итоге получаем известные стороны треугольника АВС: АВ = V13 ; BC = 2V13 ; AC = 3V5
• По теореме косинусов:
АС^2 = АВ^2 + ВС^2 - 2•АВ•ВС•cos B
( 3V5 )^2 = ( V13 )^2 + ( 2V13 )^2 - 2•V13•2V13•cos B
45 = 13 + 52 - 52•cos B
cos B = 5 / 13 => sin B = 12 / 13
• Площадь тр. АВС:
S abc = AB • BC • sin B / 2 = ( V13 • 2V13 • 12/13 ) / 2 = 12
• Воспользовшись следующей формулой найдём искомый радиус вписанной окружности в тр. АВС:
ОТВЕТ: V13 - V5