Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой. Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны. Обязательно сделайте рисунок. ( не получается его добавить) Гипотенуза треугольника равна 5+12=17 В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе. Один катет равен 12+х другой ( искомый )- равен х+5 Составим уравнение: 17²=(х+5)²+(12+х)² 289=х²+10х+25+144+24х+х² 120=2х²+34х (сократим на 2) х²+17х-60=0 Решив уравнение через дискриминант, найдем х=3 (второй корень отрицательный и не подходит) Меньший катет( лежит против меньшего угла) равен 3+5=8 Больший равен 3+12=15 см Настало время применить теорему, данную в начале задачи: Обозначим оди из отрезков катета у, второй 8-у у:(8-у)=15:17 17у=120-15у 32у=120 у=3,75 см - первый отрезок 8-3,75=4,25 см - второй отрезок.
По течению реки :
скорость V по теч. = (х+3) км/ч
расстояние S1= 8 км
время в пути t1= 8/(х+3) ч.
Против течения реки:
V против теч. =(х-3) км/ч
S2= 6 км
t2= 6/(х-3)
t1+t2 = 1 ч. 12 мин . = 1 12/60 ч. = 1,2 ч.
Уравнение.
8/(х+3) + 6/(х-3) = 1,2 |*(x-3)(x+3)
знаменатели не равны 0 :
х+3≠0 ⇒ х≠-3
x-3≠0 ⇒ x≠3
8(x-3) + 6(x+3) =1.2(x-3)(x+3)
8x- 24 + 6x +18 = 1.2(x² -9 )
14x - 6 = 1.2x²- 10.8
1.2x² -10.8 -14x +6=0
1.2x²-14x - 4.8 =0
D= (-14)² - 4*1.2 *(-4.8) = 196 + 23.04= 219.04=14.8²
x1= (14-14.8)/ (2*1.2) = -0.8/2.4 = -1/3 не удовл. условию задачи (скорость не может быть отрицательной величиной)
x2= (14+14.8) / 2.4 = 28.8/2.4= 12 (км/ч) собственная скорость лодки
ответ: 12 км/ч.
Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой.
Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны.
Обязательно сделайте рисунок. ( не получается его добавить)
Гипотенуза треугольника равна 5+12=17
В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе.
Один катет равен 12+х
другой ( искомый )- равен х+5
Составим уравнение:
17²=(х+5)²+(12+х)²
289=х²+10х+25+144+24х+х²
120=2х²+34х (сократим на 2)
х²+17х-60=0
Решив уравнение через дискриминант, найдем
х=3 (второй корень отрицательный и не подходит)
Меньший катет( лежит против меньшего угла) равен 3+5=8
Больший равен 3+12=15 см
Настало время применить теорему, данную в начале задачи:
Обозначим оди из отрезков катета у, второй 8-у
у:(8-у)=15:17
17у=120-15у
32у=120
у=3,75 см - первый отрезок
8-3,75=4,25 см - второй отрезок.