Дан параллелограмм ABCD На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN Докажите, что MBND –
Доказываешь, что два треугольник AMD и CNB:АМ = CN по условию,АВ=СВ, т.к. это стороны параллелограмма.По первому признаку равенства треугольников: AMD = CNBИз того же равенства треугольников получаешь, чтоПроверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.
Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональACс каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагоналиМNосталась прежней и делит их, как и в исходном четырехугольнике, пополам. Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник параллелограмм.
2- угол- геометрическая фигура образованная двумя лучами (сторонами угла), выходящего из одной точки (которая называется вершиной угла) . Виды углов: острый угол, тупой угол и прямой угол. 3-Смежными называются два угла, одна сторона которых общая, а две другие образуют прямую, то есть Дополняющего лучами.
Сумма смежных углов равна 180 градусам.
Два смежных углы образуют развернутый угол.
Если два угла равны, то смежные с ними углы тоже равны.
Угол, смежный с прямым углом, является прямым.
Угол, смежный с острым углом, тупой.
Угол, смежный с тупым углом, является острым.
Любой луч, исходящий из вершины развернутого угла и проходит между сторонами разделяет его на два смежные углы.
Если два угла равны, то смежные с ними углы также равны.
Два угла, смежные с одним и тем же углом, уровне.
Если два смежных углы равны, то они прямые.
Вертикальными называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла.
Вертикальные углы равны.
При пересечении двух прямых образуются две пары вертикальных углов и четыре пары смежных углов.
Если известен один из углов, образовавшихся при пересечении двух прямых, то найти другие углы можно следующим образом: найти угол, смежный с данным, учитывая, что их сумма 180 градусов, после чего найти углы, вертикальные с известными, учитывая, что вертикальные углы уровне.
Дан параллелограмм ABCD На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN Докажите, что MBND –
Доказываешь, что два треугольник AMD и CNB:АМ = CN по условию,АВ=СВ, т.к. это стороны параллелограмма.По первому признаку равенства треугольников: AMD = CNBИз того же равенства треугольников получаешь, чтоПроверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональACс каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагоналиМNосталась прежней и делит их, как и в исходном четырехугольнике, пополам.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник параллелограмм.
3-Смежными называются два угла, одна сторона которых общая, а две другие образуют прямую, то есть Дополняющего лучами.
Сумма смежных углов равна 180 градусам.
Два смежных углы образуют развернутый угол.
Если два угла равны, то смежные с ними углы тоже равны.
Угол, смежный с прямым углом, является прямым.
Угол, смежный с острым углом, тупой.
Угол, смежный с тупым углом, является острым.
Любой луч, исходящий из вершины развернутого угла и проходит между сторонами разделяет его на два смежные углы.
Если два угла равны, то смежные с ними углы также равны.
Два угла, смежные с одним и тем же углом, уровне.
Если два смежных углы равны, то они прямые.
Вертикальными называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла.
Вертикальные углы равны.
При пересечении двух прямых образуются две пары вертикальных углов и четыре пары смежных углов.
Если известен один из углов, образовавшихся при пересечении двух прямых, то найти другие углы можно следующим образом: найти угол, смежный с данным, учитывая, что их сумма 180 градусов, после чего найти углы, вертикальные с известными, учитывая, что вертикальные углы уровне.