Если на ребрах тетраэдра abcd отмечены точки v (на ребре ab), r (на ребре bd) и t (на ребре cd), а по условию нужно построить сечение тетраэдра плоскостью vrt, то постройте, прежде всего, прямую, по которой плоскость vrt будет пересекаться с плоскостью abc. в данном случае точка v будет общей для плоскостей vrt и abc. 2для того чтобы построить еще одну общую точку, продлите отрезки rt и bc до их пересечения в точке k (данная точка и будет второй общей точкой для плоскостей vrt и abc). из этого следует, что плоскости vrt и abc пересекаться будут по прямой vк. 3в свою очередь прямая vк пересечет ребро ас в точке l. таким образом, четырехугольник vrtl и является искомым сечением тетраэдра, построить которое нужно было по условию . 4обратите внимание на то, что, если прямые rt и bc параллельны, то прямая rt параллельна грани авс, поэтому плоскость vrt пересекает данную грань по прямой vк', которая параллельна прямой rt. а точка l будет точкой пересечения отрезка ас с прямой vк'. сечениететраэдра будет все тем же четырехугольником vrtl. 5допустим, известны следующие исходные данные: точка q находится на боковой грани adb тетраэдра abcd. требуется построить сечение этого тетраэдра, которое бы проходило через точку q и было бы параллельным основанию abc. 6ввиду того, что секущая плоскость параллельна основанию abc, она также будет параллельна прямым ав, вс и ас. а значит, секущая плоскость пересекает боковые грани тетраэдра abcd по прямым, которые параллельны сторонам треугольника-основания авс. 7проведите из точки q прямую параллельно отрезку ав и обозначьте точки пересечения данной прямой с ребрами ad и bd буквами m и n. 8затем через точку m проведите прямую, которая бы проходила параллельно отрезку ас, и обозначьте точку пересечения данной прямой с ребром cd буквой s. треугольник mns и есть искомым сечением.
ответ:Рисунок 1.47
Угол В вписанный,равен 90 градусов,опирается на дугу 180 градусов
Угол К вписанный,опирается на дугу
180+40=220 градусов и равен половине ее градусной меры
<В=110 градусов
Рисунок 1.48
Угол В вписанный,опирается на дугу
360-(120+80)=160 градусов
<АВD опирается на дугу
160:2=80 градусов
На эту же дугу опирается центральный угол АОD и равен ее градусной мере
<АОD=80 градусов
Рисунок 1.49
Радиус и касательная образуют угол 90 градусов.
Дуга ВСА равна 180 градусов,т к диаметр делит окружность пополам
360:2=280 градусов
Угол АВС вписанный и опирается на дугу в два раза больше его градусной меры
59•2=118 градусов
Угол ВАС опирается на дугу
180-118=62 градуса
он вписанный и равен половине градусной меры дуги
62:2=31 градус
Рисунок 1.50
<Р вписанный и равен половине дуги,на которую он опирается
Дуга равна
АЕ=55•2=110 градусов
< К=(110-40):2=35 градусов
Рисунок 1.51
<D вписанный,равен половине дуги,на которую он опирается
Дуга равна
50•2=100 градусов
Дуга FDG=360-100=260
<TFG=260:2=130 градусов
Объяснение: