Обозначим четырёхугольник АВСД, центр окружности О. У вписанного четырёхугольника сумма противоположных углов равна 180 градусов. Значит, противоположные углы - это А; С (120°; 60°) и В; Д ( 150°; 30°). Проведём радиусы в вершины. Так как по условию ВС = АВ, то ОВ делит угол в 150° на 2 по 75°. Треугольники ОСВ и ОВА равнобедренные, угол ВАО тоже 75°. Тогда угол ОАД равен 120°-75 = 45°. Угол АОД равен 180°-45°-30° = 105°. Дуга АВС, на которую опирается вписанный угол Д, равна 30*2 = 60°. Так как она делится пополам, то получаем ответ: Дуги равны: АВ = ВС = 30°, АД = 105°, ДОС = 360°-2*30°-105° = 195°.
Дано: ABCD - параллелограмм
AD = 7 дм
ВН = 6 дм - высота
Найти: Sabcd.
Решение:
Sabcd = AD · BH = 7 · 6 = 42 (дм²)
2.
Дано: ABCD - параллелограмм
Sabcd = 18 м²
AD = 3 м
ВН - высота, проведенная к AD.
Найти: BH.
Решение:
Sabcd = AD · BH
BH = Sabcd/AD = 18/3 = 6 (м)
3.
Дано: ΔАВС, АС = 7 дм,
ВН = 6 дм - высота
Найти: Sabc.
Решение:
Sabc = 1/2 · AC · BH
Sabc = 1/2 · 7 · 6 = 21 (дм²)
4.
Дано: ΔАВС, ∠А = 90°,
АВ = 4 дм, АС = 9 мм
Найти: Sabc.
Решение:
Sabc = 1/2 · AC · AB
AC = 9 мм = 0,09 дм
Sabc = 1/2 · 0,09 · 4 = 0,18 (дм²)
5.
Дано: ABCD - трапеция, AD║BC,
ВС = 6 см, AD = 9 см,
ВН = 4 см - высота.
Найти: Sabcd.
Решение:
Sabcd = (AD + BC)/2 · BH
Sabcd = (9 + 6)/2 · 4 = 30 (см²)
У вписанного четырёхугольника сумма противоположных углов равна 180 градусов.
Значит, противоположные углы - это А; С (120°; 60°) и В; Д ( 150°; 30°).
Проведём радиусы в вершины.
Так как по условию ВС = АВ, то ОВ делит угол в 150° на 2 по 75°.
Треугольники ОСВ и ОВА равнобедренные, угол ВАО тоже 75°.
Тогда угол ОАД равен 120°-75 = 45°.
Угол АОД равен 180°-45°-30° = 105°.
Дуга АВС, на которую опирается вписанный угол Д, равна 30*2 = 60°.
Так как она делится пополам, то получаем ответ:
Дуги равны:
АВ = ВС = 30°,
АД = 105°,
ДОС = 360°-2*30°-105° = 195°.