Решите задачу с рисунком:
Отрезок CD — биссектриса равнобедренного треугольника АВС
с основанием BC. Через точку D проведена прямая DF, параллель-
ная стороне AC так, что точка F лежит на стороне BC. Градусная
мера угла DFC равна 110. Определите вид треугольника DFC. Най-
дите внешний угол треугольника ABC при вершине А.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
ответ:Координаты точки указываются от начала координат по трем осям.Это:X;Y;Z
Так, по трем точкам X;Z;Y они равны соответственно 2;-3; 1
Три оси перпендикулярны между собой,это значит если ось перпендикулярна двум прямым,то получается что она перпендикулярна и поскости этих двух прямых.Далее рассмотрим плоскость YOZ.Прямая ОХ перпендикулярна ей,и по этой прямой,точка,находится в 2х условных ед. от плоскости ХОZ равным 3м, и от XOY равным ед.
Получам ответ 2;3;1
Объяснение:Почему в ответе число без минуса? ответ прост:Расстояние отрицательным быть не может.