Чтобы найти сторону надо сделать из прямоугольника с его диагональю треугольник, получится прямоугольный треугольник. теперь 64.3 это будет катетом треугольника . нарисуем визуально такой же треугольник и с другой стороны треугольника, чтоб получился равносторонний треугольник. теперь находим высоту равностороннего треугольника это будет h=a√3 /2 , где а это гипотенуза треугольника т.е диагональ прямоугольника. получится h=64,3√3 /2 это и будет длинная сторона прямоугольника. теперь находим другую сторону , на этом же треугольнике. треугольник у нас равносторонний и поэтому сторона у нас будет поделенная на два т.е. d= 64,3/2=32.15 это будет короткая сторона прямоугольника теперь находим пеример прямоугольника p=a+b+c+d р=64,3√3 /2+ 64,3√3 /2+32,15+32,15=94,45√6
Будем считать, что задание должно было выглядеть так:
1) У правильной четырехугольной пирамиды высота 17 см, сторона основания 8 см. Найти боковое ребро пирамиды.
2) Основание пирамиды - равнобедренный треугольник, длина сторон которого 40 см, 25 см и 25 см. Высота пирамиды 8 см, при этом высота проходит через вершину угла, который находится напротив длинной стороны. Найти площадь боковой поверхности пирамиды и её объем.
1) У правильной четырёх угольной пирамиды в основании квадрат.
Сторона а = 8 см.
Проекции боковых рёбер L - это половины диагоналей d основания.
(d/2) = 8√2/2 = 4√2 см.
Тогда боковое ребро пирамиды L = √(17² + (4√2)² = √(289 + 32) = √321 ≈
17,916473.
2) Высота основания h = √(25² - 20²) = 15 см.
Высота наклонной грани hн = √(8² + 15²) = √289 = 17 см.
теперь находим другую сторону , на этом же треугольнике. треугольник у нас равносторонний и поэтому сторона у нас будет поделенная на два т.е. d= 64,3/2=32.15 это будет короткая сторона прямоугольника
теперь находим пеример прямоугольника
p=a+b+c+d
р=64,3√3 /2+ 64,3√3 /2+32,15+32,15=94,45√6
Будем считать, что задание должно было выглядеть так:
1) У правильной четырехугольной пирамиды высота 17 см, сторона основания 8 см. Найти боковое ребро пирамиды.
2) Основание пирамиды - равнобедренный треугольник, длина сторон которого 40 см, 25 см и 25 см. Высота пирамиды 8 см, при этом высота проходит через вершину угла, который находится напротив длинной стороны. Найти площадь боковой поверхности пирамиды и её объем.
1) У правильной четырёх угольной пирамиды в основании квадрат.
Сторона а = 8 см.
Проекции боковых рёбер L - это половины диагоналей d основания.
(d/2) = 8√2/2 = 4√2 см.
Тогда боковое ребро пирамиды L = √(17² + (4√2)² = √(289 + 32) = √321 ≈
17,916473.
2) Высота основания h = √(25² - 20²) = 15 см.
Высота наклонной грани hн = √(8² + 15²) = √289 = 17 см.
Sбок = (1/2)*(8*25 + 8*25 + 40*17) = 540 см².
Площадь основания Sо = (1/2)/40*15 = 300 см².
Объём пирамиды V = (1/3)*300*8 = 800 cм³.