Дано: ABCD - прямоугольная трапеция (BC||AD, AB⊥AD), окружность, впис. в ABCD, R= 4, CD = 17 см.
Найти: BC, AD.
Решение.
Проведём высоту СН.
Диаметр NK, проведённый через точки соприкосновения окружности, равен высоте СН. Также, высота и боковая сторона прямоугольной трапеции, прилежащая к прямому углу, равны. СН=NK=AB.
NK=CH=AB=d= 2R= 2•4= 8 (см).
В прямоугольном ΔCHD (∠CHD=90°) по т. Пифагора:
HD²= CD² - CH²;
HD²= 17² - 8²;
HD²= 289 - 64;
HD²= 225;
HD= 15 (-15 не подходит).
AD= AH+HD, AH=BC (поскольку AB и CH высоты), значит, AD= BC+HD => AD= BC+15.
Свойство трапеции, в которую вписана окружность:
если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон.
2) ΔАВС , АМ, СК ВД - медианы, пересекаются в точке О , ∠АОС=90° ,
АС=12 см . Найти: ВД .
ΔАОС - прямоугольный, ОД - медиана , проведённая из прямого угла АОС . Она равна половине гипотенузы АС, то есть ОД=12:2=6 см.
Медианы в точке пересечения делятся в отношении 2:1, считая от вершины, то есть ВО:ОД=2:1 . Значит, ВО=2·ОД=2·6=12 см .
Вся медиана ВД=ВО+ОД=12+6=18 см
3) АВСД - трапеция , ВС║АД , РТ - средняя линия трапеции ,
АС ∩ РТ= М , ВД ∩ РТ = К , ВС=4 см , АД=12 см . Найти МК .
Рассм. ΔАВС , РМ - средняя линия, РМ=0,5·ВС=0,5·4=2 см .
Рассм. ΔАВД , РК - средняя линия , РК=0,5·АД=0,5·12=6 см .
МК=РК-РМ=6-2=4 см .
Дано: ABCD - прямоугольная трапеция (BC||AD, AB⊥AD), окружность, впис. в ABCD, R= 4, CD = 17 см.
Найти: BC, AD.
Решение.
Проведём высоту СН.
Диаметр NK, проведённый через точки соприкосновения окружности, равен высоте СН. Также, высота и боковая сторона прямоугольной трапеции, прилежащая к прямому углу, равны. СН=NK=AB.
NK=CH=AB=d= 2R= 2•4= 8 (см).
В прямоугольном ΔCHD (∠CHD=90°) по т. Пифагора:
HD²= CD² - CH²;
HD²= 17² - 8²;
HD²= 289 - 64;
HD²= 225;
HD= 15 (-15 не подходит).
AD= AH+HD, AH=BC (поскольку AB и CH высоты), значит, AD= BC+HD => AD= BC+15.
Свойство трапеции, в которую вписана окружность:
если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон.
Отсюда, BC+AD=AB+CD,
BC+ (BC+15)= 8+17;
2BC+ 15= 25;
2BC= 10;
BC= 5 (см).
Значит, AD= 5+15= 20 см.
ОТВЕТ: 5 см, 20 см.