1) В основании у нас получается равнобедренный треугольник(две стороны - радиус одной окружности) с углом в 90° в центре окружности и высотой 2см. Т.к. треугольник равнобедренный, следует высота=биссектрисе.
Находим радиус окружности:
см
Находим высоту цилиндра:
Т.к. проведенное пересечение у нас квадрат, следует высота цилиндра равна основанию треугольника(в основании цилиндра)
Половина основания треугольника(она же половина высоты) равна
Значит так: Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) . Запишем неравенство: - всё это конечно углы. Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP) ∠P>∠N Значит против ∠Р лежит сторона, большая от стороны против угла N И меньшая стороне NP. В итоге получаем: NP>ON>OP Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
1) ≈71,05
Объяснение:
1) В основании у нас получается равнобедренный треугольник(две стороны - радиус одной окружности) с углом в 90° в центре окружности и высотой 2см. Т.к. треугольник равнобедренный, следует высота=биссектрисе.
Находим радиус окружности:
см
Находим высоту цилиндра:
Т.к. проведенное пересечение у нас квадрат, следует высота цилиндра равна основанию треугольника(в основании цилиндра)
Половина основания треугольника(она же половина высоты) равна
см
Следует высота равна
см
Находим площадь боковой поверхности цилиндра:
≈71,05
Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) .
Запишем неравенство:
- всё это конечно углы.
Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N
Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP)
∠P>∠N
Значит против ∠Р лежит сторона, большая от стороны против угла N
И меньшая стороне NP.
В итоге получаем:
NP>ON>OP
Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.