Точка касания вписанной в трапецию окружности делит одну боковую сторону на отрезки 9 см и 16 см, а другую - на отрезки, которые относятся как 4:9. Найти основания трапеции. -------- Пусть данная трапеция. АВСД. Точки касания на АВ, ВС, СД и ДА пусть будут ф, е, м, т соответственно. Пусть коэффициент отношения отрезков на АВ будет х. Тогда Вф=4х, Аф=9х Отрезки касательных из одной точки до точек касания равны. ⇒ Се=См=9 Дт=Дм=16 Вф=Ве=4х Аф=Ат=9х Опустим из С перпендикуляр СК на АД. Се=Кт=9 КД=16-9=7 Из ∆ СКД по т.Пифагора найдем СК=24. Опустим из В перпендикуляр на АД. Нт=Ве=4х⇒ АН=5х ВН=СК=24 АВ²-АН²=ВН² 169х²-25х²=576 144х²=576 х⇒2 ВС=4*2+9=17 см АД=9*2+16=34 см --------- Проверка. Суммы противоположных сторон четырехугольника, в который вписана окружность. равны. АВ=13*2=26 АВ+СД=26+25=51 ВС+АД=17+34=51⇒ АВ+СД=ВС+АД=51
ΔADC - равнобедренный (по рис.) ⇒ ∠B = ∠D (по свойству равнобедр. треуг.).
Отрезок CK - медина (делит противолежащую сторону на две равные) является высотой (по свойству равнобедр. треуг.) ⇒ ∠CKB = 90°.
∠CBK + ∠CKB + ∠BCK = 180° (по свойству треуг.)
∠CBK + 90° + 30° = 180°
∠CBK = 180° - (90° + 30°)
∠CBK = 60°
∠CBK и ∠CBA - смежные ⇒ ∠CBK + ∠CBA = 180°
60° + ∠CBA = 180°
∠CBA = 120°
ответ: ∠CBA = 120°.
Задание 7
Дано:
ΔCAD - равнобедренный
CA = DA
CB = BD
Найти:
∠CBA - ?
ΔCAD - равнобедр. (по рис.)
⇒ Отрезок BA - медианой (делит противолежащую сторону на две равные), является высотой (по свойству равнобедр. треуг.) и образует углы (∠CBA и ∠DBA) в 90°.
⇒ ∠CBA = 90°
ответ: ∠CBA = 90°.
Задание 8
Дано:
ΔDBK - равнобедр.
DM = MK
DB = BK
∠K = 70°
Найти:
∠CBA - ?
ΔDBE - равнобедр. (по рис.)
BM - медиана (делит противолежащую сторону на две равные)
⇒ BM - биссектриса и высота (по свойству равнобедр. треуг.)
--------
Пусть данная трапеция. АВСД. Точки касания на АВ, ВС, СД и ДА пусть будут ф, е, м, т соответственно.
Пусть коэффициент отношения отрезков на АВ будет х.
Тогда Вф=4х, Аф=9х
Отрезки касательных из одной точки до точек касания равны. ⇒
Се=См=9
Дт=Дм=16
Вф=Ве=4х
Аф=Ат=9х
Опустим из С перпендикуляр СК на АД.
Се=Кт=9
КД=16-9=7
Из ∆ СКД по т.Пифагора найдем СК=24.
Опустим из В перпендикуляр на АД.
Нт=Ве=4х⇒
АН=5х
ВН=СК=24
АВ²-АН²=ВН²
169х²-25х²=576
144х²=576
х⇒2
ВС=4*2+9=17 см
АД=9*2+16=34 см
---------
Проверка.
Суммы противоположных сторон четырехугольника, в который вписана окружность. равны.
АВ=13*2=26
АВ+СД=26+25=51
ВС+АД=17+34=51⇒
АВ+СД=ВС+АД=51
Задание 6
Дано:
ΔADC - равнобедренный
BK = KD
AC = CD
∠BCK = 30°
Найти:
∠CBA - ?
ΔADC - равнобедренный (по рис.) ⇒ ∠B = ∠D (по свойству равнобедр. треуг.).
Отрезок CK - медина (делит противолежащую сторону на две равные) является высотой (по свойству равнобедр. треуг.) ⇒ ∠CKB = 90°.
∠CBK + ∠CKB + ∠BCK = 180° (по свойству треуг.)
∠CBK + 90° + 30° = 180°
∠CBK = 180° - (90° + 30°)
∠CBK = 60°
∠CBK и ∠CBA - смежные ⇒ ∠CBK + ∠CBA = 180°
60° + ∠CBA = 180°
∠CBA = 120°
ответ: ∠CBA = 120°.
Задание 7
Дано:
ΔCAD - равнобедренный
CA = DA
CB = BD
Найти:
∠CBA - ?
ΔCAD - равнобедр. (по рис.)
⇒ Отрезок BA - медианой (делит противолежащую сторону на две равные), является высотой (по свойству равнобедр. треуг.) и образует углы (∠CBA и ∠DBA) в 90°.
⇒ ∠CBA = 90°
ответ: ∠CBA = 90°.
Задание 8
Дано:
ΔDBK - равнобедр.
DM = MK
DB = BK
∠K = 70°
Найти:
∠CBA - ?
ΔDBE - равнобедр. (по рис.)
BM - медиана (делит противолежащую сторону на две равные)
⇒ BM - биссектриса и высота (по свойству равнобедр. треуг.)
⇒ ∠BME = 90°.
∠K + ∠BME + ∠MBE = 180° (по свойству треуг.)
⇒ 70° + 90° + ∠MBE = 180°
∠MBE = 180° - (70° + 90°)
∠MBE = 20°
Т.к. BM - биссектриса, то ∠DBE = 2∠MBE = 40°
∠DBE и ∠CBA - вертикальные
⇒ ∠DBE = ∠CBA = 40°
ответ: ∠CBA = 40°.