Рис. 1 2. Внутренний угол правильного многоугольника равен 108°, сторона равна 6. Найдите периметр этого многоугольника. 3. Площадь четверти круга равна 4л (рис. 2). Найдите радиус круга. Рис. 2
Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
Объяснение:
Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
1)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (20 - х).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{20-x}=\frac{10}{15}\\ 15x = 10(20-x)\\ 15x = 200-10x\\ 15x + 10x = 200\\ 25x = 200\\ x = 8\\ AD=8 \\ DC=12\\\end{gathered}
DC
AD
=
BC
AB
20−x
x
=
15
10
15x=10(20−x)
15x=200−10x
15x+10x=200
25x=200
x=8
AD=8
DC=12
2)
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{8}{5}=\frac{16}{BC}\\ BC = \frac{16*5}{8}\\ BC = 10\\\end{gathered}
DC
AD
=
BC
AB
5
8
=
BC
16
BC=
8
16∗5
BC=10
3)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (х+1).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{x+1}=\frac{2}{7}\\ 7x = 2(x+1)\\ 7x = 2x+2\\ 5x = 2 \\ x = 0.4\\ AD=0.4 \\ DC=1.4\\ AC=AD+DC=0.4+1.4=1.8\\\end{gathered}
DC
AD
=
BC
AB
x+1
x
=
7
2
7x=2(x+1)
7x=2x+2
5x=2
x=0.4
AD=0.4
DC=1.4
AC=AD+DC=0.4+1.4=1.8
12 корней из 6
Объяснение:
S= 2a*h
a=AB h=SO
Найдем их.
P=4a => a=P/4=24/4=6
d- диагональ квадрата
d=a корней из 2 (можно получить по теореме Пифагора для прямоугольного треугольника ABC со сторонами а и гипотенузой d).
Тогда АО = d/2= a корней из 2 /2=3 корня из 2
Рассмотрим треугольник AOS. Он прямоугольный с углом SA0=30 градусов.
SA=SO/sin 30 => SA=2SO
Обозначив высоту SO=x, по теореме Пифагора имеем:
(2x)^2 - x^2= (3 корня из 2)^2
3x^2= (3 корня из 2)^2
3x^2=18
x^2=6
x=корень из 6 =h
S= 2a*h= 2*6*корень из 6= 12 корней из 6