1) △BAO, △BCO равнобедренные (AE, EC являются одновременно медианами и высотами) => BA=OA, BC=OC OA=OB=OC (радиусы окружности) OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60) ∠ABC=∠ABO+∠OBC=120 ∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180) ∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC AH=AC/2 (в равнобедренном треугольнике высота является медианой) AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис. Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины. BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4 r= OH = BH*4/9 =4
Рисунок вам нарисовала. Там все ясно-понятно. Треугольник FAB равносторонний. Все стороны равны, все углы по 60, такой вывод делаем из условия. Сторону этого треугольника обозначаем х. Δ FMA: М = 90 FM - бисектриса, медиана, высота FM = хsina = x√3/2 Чтобы найти угол между мимобегущими, нужно найти угол между паралельными им прямыми, которые пересекаются. Перенесем AC в ML, это будет средняя линия треугольника ABC Чтобы узнать AC найдем диагональ квадрата d² = 2a² Сторона у нас х d² = 2x² d = x√2 ML = x√2/2 ΔFMO₁ (O₁ = 90) MO₁ = x√2/4 MO₁/FM = cos a = x√2/4/x√3/2 = √2/2√3 = √6/6 Не знаю, почему значение не табличное, может я ошиблась, но вроде все правильно было :)
OA=OB=OC (радиусы окружности)
OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60)
∠ABC=∠ABO+∠OBC=120
∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180)
∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC
AH=AC/2 (в равнобедренном треугольнике высота является медианой)
AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис.
Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины.
BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4
r= OH = BH*4/9 =4
R= AB*BC*AC/2*S = AB*BC/2*BH = 15^2/2*9 =12,5
Проверка:
r*R= AB*BC*AC/2(AB+BC+AC)
15*15*24/2(15+15+24) = 50 = 4*12,5
Треугольник FAB равносторонний. Все стороны равны, все углы по 60, такой вывод делаем из условия. Сторону этого треугольника обозначаем х.
Δ FMA: М = 90 FM - бисектриса, медиана, высота
FM = хsina = x√3/2
Чтобы найти угол между мимобегущими, нужно найти угол между паралельными им прямыми, которые пересекаются.
Перенесем AC в ML, это будет средняя линия треугольника ABC
Чтобы узнать AC найдем диагональ квадрата
d² = 2a²
Сторона у нас х
d² = 2x²
d = x√2
ML = x√2/2
ΔFMO₁ (O₁ = 90)
MO₁ = x√2/4
MO₁/FM = cos a = x√2/4/x√3/2 = √2/2√3 = √6/6
Не знаю, почему значение не табличное, может я ошиблась, но вроде все правильно было :)