Рия Самостоятельная работа №10 на тему: "Треугольник. Соотношение между углами и
сторонами"
Вариант І.
1. Задан треугольник DEF. Угол D меньше угла F на 40°, а угол E меньше угла DB
3 раза. Найдите все углы треугольника. Какая сторона больше DE или EF?
2. Задан прямоугольный треугольник XYZ, где YZ гипотенуза. Внешний угол при
вершине Z равен 120°, сторона XY равна 7 см. Чему равна длина гипотенузы?
3. В равнобедренном треугольнике KLM, на основании KM указана точка Р. От
этой точки проведены перпендикуляры к двум боковым сторонам, соответственно
PA и PB. Докажите, что эти отрезки РА и РВ равны друг другу.
Вариант ІІ.
залан треугольник KLM. Угол К меньше угла L в 2 раза, а угол м больше угла
L
Итак,
Для решения нам нужно знать 3 признака подобия треугольников:
1)по двум пропорциональным сторонам и углу между ними
2)по двум углам
3)по трём пропорциональным сторонам
1) ΔCDO~ΔABO
Доказательство:
∠COD=∠AOB(вертикальные углы)
∠DCO=∠OBA(накрест лежащие углы при параллельных прямых а и б)
Выполняется второй признак подобия треуг. по двум углам
Ч.Т.Д
2)ΔFLK~ΔFMN
Доказательство:
∠F-общий
∠FKL=∠FMN(прямые углы)
Выполняется второй признак подобия треуг. по двум углам
Ч.Т.Д
3) ΔMHK~ΔMCD
Доказательство:
M-общий угол
∠MHK=∠MCD(соответственные углы при параллельных прямых)
Выполняется второй признак подобия треуг. по двум углам
Ч.Т.Д
ответ: v=4см³
Объяснение: так как в основе правильной четырёхугольника призмы лежит квадрат, то
АВ=ВС=СД=АД=А1В1=В1С1=С1Д1=А1Д1.
ВД в квадрате является диагональю, которая делит его углы пополам (90÷2=45°) и образует два равных равнобедренных прямоугольных треугольника АВД и ВСД в которых АВ и АД, ВС и СД являются катетами, а ВД гипотенуза. В равнобедренном прямоугольном треугольнике каждый катет= гипотенуза /√2, поэтому
АВ=АД=ВС=СД=2/√2см. Теперь найдём объем прищмы, зная её стороны по формуле: v=a²×h, где а- сторона основания, h- высота призмы:
V=(2/√2)²×2=(2/√2)²×2=4/2×2=4см³