Треугольники называются равными, если их можно совместить наложением. Т.е. все вершины, стороны и углы одного треугольника совпадут с соответствующими вершинами, сторонами и углами другого треугольника. Очевидно, что если мы совместим вершины, то и остальные элементы треугольников совместятся.
Первый признак равенства треугольников: если 2 стороны и угол между ними одного треугольника соответственно равны 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: Обозначим вершины первого треугольника ABC, а второго - KLM. Пусть выполняются следующие условия: AB=KL AC=KM ∠A=∠K
Доказать, что треугольник ABC равен треугольнику KLM.
Д-во: Т.к. ∠A = ∠K, то угол K можно наложить на угол A так, что вершина угла K совместиться с вершиной угла A, сторона угла (KL) совместится со стороной угла (AB), а сторона угла (KM) совместиться со стороной угла (AC).
Т.к. отрезок AB равен отрезку KL, а лучи (AB) и (KL) совпадают, то точка K должна совместиться с точкой B. Аналогично, т.к. отрезок AC равен отрезку KM, то должны совместиться точки C и M.
Значит, все три вершины треугольника KLM совмещаются с тремя вершинами треугольника ABC. А значит, совмещаются и все остальные элементы этих треугольников.
А это и значит, что треугольник ABC равен треугольнику KLM.
В прямоугольном параллелепипеда все грани - прямоугольники, следовательно, его ребра перпендикулярны плоскости оснований; поэтому и диагональные сечения - прямоугольники. АС₁ - диагональ прямоугольного параллелепипеда. Для ее нахождения применяется формула d²=а²+b²+c₂, где a, b, c - измерения параллелепипеда, т.е. длины ребер, исходящих из одной вершины. d²=19²+8₂+4² d²=441 d=21 ----------- Тот же результат получим, если 1) найдем по ф.Пифагора АС, затем 2) из прямоугольного треугольника АСС₁ диагональ АС₁ Отсюда выведена данная выше формула: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений.
Очевидно, что если мы совместим вершины, то и остальные элементы треугольников совместятся.
Первый признак равенства треугольников: если 2 стороны и угол между ними одного треугольника соответственно равны 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано:
Обозначим вершины первого треугольника ABC, а второго - KLM. Пусть выполняются следующие условия:
AB=KL
AC=KM
∠A=∠K
Доказать, что треугольник ABC равен треугольнику KLM.
Д-во:
Т.к. ∠A = ∠K, то угол K можно наложить на угол A так, что вершина угла K совместиться с вершиной угла A, сторона угла (KL) совместится со стороной угла (AB), а сторона угла (KM) совместиться со стороной угла (AC).
Т.к. отрезок AB равен отрезку KL, а лучи (AB) и (KL) совпадают, то точка K должна совместиться с точкой B.
Аналогично, т.к. отрезок AC равен отрезку KM, то должны совместиться точки C и M.
Значит, все три вершины треугольника KLM совмещаются с тремя вершинами треугольника ABC. А значит, совмещаются и все остальные элементы этих треугольников.
А это и значит, что треугольник ABC равен треугольнику KLM.
Ч.т.д.
АС₁ - диагональ прямоугольного параллелепипеда. Для ее нахождения применяется формула
d²=а²+b²+c₂, где a, b, c - измерения параллелепипеда, т.е. длины ребер, исходящих из одной вершины.
d²=19²+8₂+4²
d²=441
d=21
-----------
Тот же результат получим, если
1) найдем по ф.Пифагора АС, затем
2) из прямоугольного треугольника АСС₁ диагональ АС₁
Отсюда выведена данная выше формула: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений.