Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
10. Площа трикутника дорівнює добутку радіусу r вписаного кола і полупериметра р.
r=(a+b-c):2 , де а та b - катети, c -гіпотенуза.
a+b=P-с=60-c
r=(60-c-c):2=30-c
Також r=S:p; тоді
S=h*c:2
S=12*c:2=6c
р=60:2=30
r=6c/30=c/5
Отже
c/5=30-c
150-5c=c
6c=150
c=25 см
r=25/5=5 см
S=r*p=5*30=150 см².
Відповідь: 150 см²
12. Нехай дано трикутник АВС - прямокутний, ∠ А - 90°, ВС - гіпотенуза. ВС=32+18=50 см.
АН - висота.
Площа трикутника дорівнює 1\2 * ВС * АН.
АН=√(ВН*СН)=√(32*18)=√576=24 см.
S = 1\2 * 50 * 24 = 600 cм²
Відповідь: 600 см²