50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Высота в равностороннем треугольнике является также медианой и биссектрисой, значит АД=ДС, угол АВД= углу ДВС. Равенства треугольников АВД и ВДС можно доказать по всем трем признакам равенства треугольников: 1)по двум сторонам и углу между ними: АВ=ВС из дано, сторона ВД общая и угол АВД равен углу ДВС 2)по стороне и двум прилежащим углам:сторона ДВ общая, углы АВД и ДВС равны, углы АДВ и ВДС равны и прямые, так как ВД - высота. 3) по трем сторонам: АВ=ВС из дано, сторона ВД одщая, и АД равно ДС, так как ВД это и медиана тоже.
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Равенства треугольников АВД и ВДС можно доказать по всем трем признакам равенства треугольников:
1)по двум сторонам и углу между ними: АВ=ВС из дано, сторона ВД общая и угол АВД равен углу ДВС
2)по стороне и двум прилежащим углам:сторона ДВ общая, углы АВД и ДВС равны, углы АДВ и ВДС равны и прямые, так как ВД - высота.
3) по трем сторонам: АВ=ВС из дано, сторона ВД одщая, и АД равно ДС, так как ВД это и медиана тоже.