Так как кратчайшее расстояние от точки до прямой, да и вообще от чего-то до чего-то - есть перпендикуляр, то искать, соответственно надо его. итак, по построению у нас получается треугольник, со сторонами 15, 13, 4 (основание), h (тот самый перпендикуляр + высота треугольника). воспользуемся формулой герона. найдем полупериметр: см. далее, считаем по формуле: s = √p * (p - 15) * (p - 13) * (p - 4), где р - полупериметр. получаем: s = √16 * 1 * 3 * 12 = 4 * 6 = 24 cм². также, s = , где 4 - основание⇒ h = 6 cм. - искомая нами высота.
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать