1)нет не может быть параллельной плоскости бета 2)да может пересекать плоскость бета 3)нет не может лежать в плоскости бета оъяснение: естественно. эти прямые пересекаются. поскольку прямая а лежит в плоскости альфа, она не может пересечься с плоскостью бета в точке, не лежащей в плоскости альфа. следовательно, прямая а проходит через точку, лежащую одновременно в плоскостях альфа и бета. а такие точки образуют прямую с. следовательно, прямая а имеет общую точку с прямой с, причём единственную (поскольку она пересекается с плоскостью бета, то имеет с ней единственную общую точку). следовательно, эти прямые пересекаются.
1. 60
2. АВ = 70°, АС = ВС = 145°.
Объяснение:
1.
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
2 Задача
Если О - центр окружности, то угол АОВ - центральный.
Центральный угол равен дуге, на которую опирается. Отсюда, дуга АВ = 70°.
Угол САВ = углу СВА, тогда дуга АС = дуге ВС = (360° - 70°) / 2 = 290° / 2 = 145°.