Объяснение: Центр окружности, вписанной в треугольник, лежит на биссектрисе его угла.⇒ АН - биссектриса угла ВАD, О - центр окружности. ОК и ОЕ - радиусы, проведенные к точкам касания. По свойству отрезков касательных, проведенных к окружности из одной точки. АК=АЕ; DE=DH; FK=FH
Примем АК=АЕ равным х. Тогда ЕD=DH=9-х.
а) Рассмотрим рисунок приложения. Угол AFD=∠CDF (накрестлежащие при FA||CD и секущей FD) Но ∠CDF=∠ADF (DF- биссектриса ) ⇒ ∠АFD=∠FDA. ⇒ ∆ FAD – равнобедренный и AF=AD=9.
АН - биссектриса угла равнобедренного треугольника, ⇒ АН – его высота и медиана ( свойство). ⇒ FН=НD=9-х
Аналогично в ∆ КАЕ биссектриса АМ равнобедренного ∆ АКЕ - медиана и высота. ⇒ КМ=МК=4:2=2.
Прямоугольные ⊿ МАЕ и ⊿ НAD подобны по общему острому углу при А. Из подобия следует отношение DH:ЕМ=DA:ЕА.
т.е. (9-х):2=9:х., откуда получаем х²-9х+18=0. По т.Виета х₁+х₂=-(-9)=9; х₁•х₂=18 ⇒ х₁=3; х₂=6
По условию АЕ< AD, поэтому АЕ=3, ED=6
Из ⊿ АНD по т.Пифагора АН=√(AD*-DH*)=√(81-36)=3√5
⊿ АОЕ и ⊿ АDH подобны по общему углу при вершине А, из чего следует ОЕ:DH=AE:AH ⇒ r=AE•DH:AH =3•6:3√5.=6/√5.
б) При условии, что окружность касается стороны BC параллелограмма, диаметр РЕ окружности, вписанной в угол ВАD, будет высотой параллелограмма. S=h•a=2r•AD=(12/√5)•9=108/√5. = 21,6√5 (ед. площади)
S=30*4=120 Р=(30+4)*2=68 пусть уменьшенная длина будет 30-у уменьшенная ширина 4-х новая площадь должна равняться 120/2 новый периметр 68-22=46 полупериметр 46/2=23 составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2 (30-у)+(4-х)=46/2
(30-у)(4-х)=60 30-у+4-х=23
(30-у)(4-х)=60 х+у=11
(30-у)(4-х)=60 (1) х=11-у (2)
подставляем наш х в (1) получаем (30-у)(4-х(11-у))=60 (30-у)(у-7)=60 30у-210-у²+7у-60=0 -у²+37у-270=0 Д=37²-4(-1)(-270)=1369-1080=289=17² у1=-27 нам не подходит т.к. сторона не может быть отрицательной у2=10
ответ: а) 6/√5 (ед. длины). б) 108/√5=21,6√5 (ед. площади)
Объяснение: Центр окружности, вписанной в треугольник, лежит на биссектрисе его угла.⇒ АН - биссектриса угла ВАD, О - центр окружности. ОК и ОЕ - радиусы, проведенные к точкам касания. По свойству отрезков касательных, проведенных к окружности из одной точки. АК=АЕ; DE=DH; FK=FH
Примем АК=АЕ равным х. Тогда ЕD=DH=9-х.
а) Рассмотрим рисунок приложения. Угол AFD=∠CDF (накрестлежащие при FA||CD и секущей FD) Но ∠CDF=∠ADF (DF- биссектриса ) ⇒ ∠АFD=∠FDA. ⇒ ∆ FAD – равнобедренный и AF=AD=9.
АН - биссектриса угла равнобедренного треугольника, ⇒ АН – его высота и медиана ( свойство). ⇒ FН=НD=9-х
Аналогично в ∆ КАЕ биссектриса АМ равнобедренного ∆ АКЕ - медиана и высота. ⇒ КМ=МК=4:2=2.
Прямоугольные ⊿ МАЕ и ⊿ НAD подобны по общему острому углу при А. Из подобия следует отношение DH:ЕМ=DA:ЕА.
т.е. (9-х):2=9:х., откуда получаем х²-9х+18=0. По т.Виета х₁+х₂=-(-9)=9; х₁•х₂=18 ⇒ х₁=3; х₂=6
По условию АЕ< AD, поэтому АЕ=3, ED=6
Из ⊿ АНD по т.Пифагора АН=√(AD*-DH*)=√(81-36)=3√5
⊿ АОЕ и ⊿ АDH подобны по общему углу при вершине А, из чего следует ОЕ:DH=AE:AH ⇒ r=AE•DH:AH =3•6:3√5.=6/√5.
б) При условии, что окружность касается стороны BC параллелограмма, диаметр РЕ окружности, вписанной в угол ВАD, будет высотой параллелограмма. S=h•a=2r•AD=(12/√5)•9=108/√5. = 21,6√5 (ед. площади)
Р=(30+4)*2=68
пусть уменьшенная длина будет 30-у
уменьшенная ширина 4-х
новая площадь должна равняться 120/2
новый периметр 68-22=46
полупериметр 46/2=23
составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2
(30-у)+(4-х)=46/2
(30-у)(4-х)=60
30-у+4-х=23
(30-у)(4-х)=60
х+у=11
(30-у)(4-х)=60 (1)
х=11-у (2)
подставляем наш х в (1)
получаем
(30-у)(4-х(11-у))=60
(30-у)(у-7)=60
30у-210-у²+7у-60=0
-у²+37у-270=0
Д=37²-4(-1)(-270)=1369-1080=289=17²
у1=-27 нам не подходит т.к. сторона не может быть отрицательной
у2=10
подставляем в (2)
х=11-у=11-10=1
ширину надо уменьшить на 10 см, длину на 1 см