Розв’язати задачі за наданими умовами.
1. Основи трапеції ABCD (AD || BC) дорівнюють 6 см і 14 см, а діа¬гональ BD точкою перетину діагоналей ділиться на відрізки, один із яких на 2 см більший від іншого. Знайдіть довжину діагоналі BD трапеції.
2. Сторони АВ і АС трикутника ABC пов'язані відношенням АС – АВ = 9 см. АК — бісектриса кута А трикутника ABC, ВК : КС = 4 : 7. Знайдіть сторони АВ і АС.
3. Бічна сторона рівнобедреного трикутника дорівнює 9 см, а осно¬ва — 6 см. До бічних сторін трикутника проведені висоти. Знай¬діть довжину відрізка, кінцями якого є основи висот.
AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см.
обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh.
По теореме Пифагора для треугольников ABB₁ и ADD₁:
{ AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁².
{ x²+h² =13² ; (7x)² +h²=37².
Вычитаем из второго уравнения системы первое
(7x)² -x² =37² -13²;
48x² =(37-13)(37+13) ;
2*24x² =24*2*25⇒x =5 ;
h =√(13² -5²) =12.
S бок =16xh =16*5*12 =16*60 =960 (см²).
ответ: 960 см².
S = (a b c) / (4 R) также площадь равна S = 1/2 c h.
Следовательно, (a b c) / (4 R) = 1/2 c h
Так как треугольник равнобедренный, a = b = 5, R = 5; c - основание тр-ка.Сократим уравнение на величину "с" и подставим значения:(5*5) / (4*5) = 1/2 * h5/4 = 1/2 hh = 5/2 – высота треугольникаПо теореме Пифагора половина основания равна:1/2 с = √52 - (5/2)2 = √75/4 = √3*25/4 = 5/2 √3,Полное основание равно 2 * 5/2 √3 = 5√3Площадь треугольника будет равна:S = 1/2 * 5√3 * 5/2 = 25/4 √3