РОЗВ'ЯЖІТЬ БУДЬ ЛАСКА ЗАДАЧУ Дано точки А (6;-4) і B (10;-8). При паралельному перенесенні відрізка АВ образом його середини є точка М1 (-8;6) Знайдіть образи точок А і В при такому паралельному перенесенні.
1) Пусть аbcd - параллелограмм bh- биссектриса тупой угол = 150, тогда острый = 30 При проведении биссектрисы получается треугольник abh, где 2 угла будут равны по 75 градусов, т. е он равнобедренный, значит стороно ab=ah=16. Теперь в этом трегольнике проведем высоту из угла А. Получится что она лежит против угла в 30 градусов и равна половине гипотенузы= 16:2=8 Площадь параллелограмма = 8*(16+5)=168 см^2
2) площадь ромба равна 1/2*d*d1 где d и d1 это диагонали ромба и получается следуещее d/d1=3/4 4d=3d1 d=3d1/4 S=1/2*d*d1 24=1/2*3*d1/4*d1 24=3*d1^2/8 8=d1^2/8 d1^2=8*8 d1=8 d=3*d1/4=3*8/4=6 сторона ромба по теореме пифагора получится так a^2=(d/2)^2+(d1/2)^2 где a- это сторона ромба a^2=(d/2)^2+(d1/2)^2 a^2=(6/2)^2+(8/2)^2=9+16=25 a=5 P=4*a=4*5=20
3. Периметр ромба равен 4*сторона сторона равна периметр\4 сторона ромба равна 52\4=13 см Площадь ромба равна произведению квадрата стороны на синус угла между сторонами отсюда синус угла равен площадь робма разделить на квадрат стороны sin A=120\(13^2)=120\169 Так как угол А -острый, то cos A=корень (1-sin^2 A)=корень (1-(120\169)^2)= =119\169 По одной из основніх формул тригонометрии tg A=sin A\cos A=120\169\(119\169)=120\119 ответ: 120\169,119\169,120\119.
1) Пусть аbcd - параллелограмм bh- биссектриса тупой угол = 150, тогда острый = 30 При проведении биссектрисы получается треугольник abh, где 2 угла будут равны по 75 градусов, т. е он равнобедренный, значит стороно ab=ah=16. Теперь в этом трегольнике проведем высоту из угла А. Получится что она лежит против угла в 30 градусов и равна половине гипотенузы= 16:2=8 Площадь параллелограмма = 8*(16+5)=168 см^2
2) площадь ромба равна 1/2*d*d1 где d и d1 это диагонали ромба и получается следуещее d/d1=3/4 4d=3d1 d=3d1/4 S=1/2*d*d1 24=1/2*3*d1/4*d1 24=3*d1^2/8 8=d1^2/8 d1^2=8*8 d1=8 d=3*d1/4=3*8/4=6 сторона ромба по теореме пифагора получится так a^2=(d/2)^2+(d1/2)^2 где a- это сторона ромба a^2=(d/2)^2+(d1/2)^2 a^2=(6/2)^2+(8/2)^2=9+16=25 a=5 P=4*a=4*5=20
3. Периметр ромба равен 4*сторона сторона равна периметр\4 сторона ромба равна 52\4=13 см Площадь ромба равна произведению квадрата стороны на синус угла между сторонами отсюда синус угла равен площадь робма разделить на квадрат стороны sin A=120\(13^2)=120\169 Так как угол А -острый, то cos A=корень (1-sin^2 A)=корень (1-(120\169)^2)= =119\169 По одной из основніх формул тригонометрии tg A=sin A\cos A=120\169\(119\169)=120\119 ответ: 120\169,119\169,120\119.
bh- биссектриса
тупой угол = 150, тогда острый = 30
При проведении биссектрисы получается треугольник abh, где 2 угла будут равны по 75 градусов, т. е он равнобедренный, значит стороно ab=ah=16.
Теперь в этом трегольнике проведем высоту из угла А. Получится что она лежит против угла в 30 градусов и равна половине гипотенузы= 16:2=8
Площадь параллелограмма = 8*(16+5)=168 см^2
2)
площадь ромба равна 1/2*d*d1
где d и d1 это диагонали ромба
и получается следуещее
d/d1=3/4
4d=3d1
d=3d1/4
S=1/2*d*d1
24=1/2*3*d1/4*d1
24=3*d1^2/8
8=d1^2/8
d1^2=8*8
d1=8
d=3*d1/4=3*8/4=6
сторона ромба по теореме пифагора получится так
a^2=(d/2)^2+(d1/2)^2 где a- это сторона ромба
a^2=(d/2)^2+(d1/2)^2
a^2=(6/2)^2+(8/2)^2=9+16=25
a=5
P=4*a=4*5=20
3.
Периметр ромба равен 4*сторона
сторона равна периметр\4
сторона ромба равна 52\4=13 см
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами
отсюда синус угла равен площадь робма разделить на квадрат стороны
sin A=120\(13^2)=120\169
Так как угол А -острый, то cos A=корень (1-sin^2 A)=корень (1-(120\169)^2)=
=119\169
По одной из основніх формул тригонометрии
tg A=sin A\cos A=120\169\(119\169)=120\119
ответ: 120\169,119\169,120\119.
bh- биссектриса
тупой угол = 150, тогда острый = 30
При проведении биссектрисы получается треугольник abh, где 2 угла будут равны по 75 градусов, т. е он равнобедренный, значит стороно ab=ah=16.
Теперь в этом трегольнике проведем высоту из угла А. Получится что она лежит против угла в 30 градусов и равна половине гипотенузы= 16:2=8
Площадь параллелограмма = 8*(16+5)=168 см^2
2)
площадь ромба равна 1/2*d*d1
где d и d1 это диагонали ромба
и получается следуещее
d/d1=3/4
4d=3d1
d=3d1/4
S=1/2*d*d1
24=1/2*3*d1/4*d1
24=3*d1^2/8
8=d1^2/8
d1^2=8*8
d1=8
d=3*d1/4=3*8/4=6
сторона ромба по теореме пифагора получится так
a^2=(d/2)^2+(d1/2)^2 где a- это сторона ромба
a^2=(d/2)^2+(d1/2)^2
a^2=(6/2)^2+(8/2)^2=9+16=25
a=5
P=4*a=4*5=20
3.
Периметр ромба равен 4*сторона
сторона равна периметр\4
сторона ромба равна 52\4=13 см
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами
отсюда синус угла равен площадь робма разделить на квадрат стороны
sin A=120\(13^2)=120\169
Так как угол А -острый, то cos A=корень (1-sin^2 A)=корень (1-(120\169)^2)=
=119\169
По одной из основніх формул тригонометрии
tg A=sin A\cos A=120\169\(119\169)=120\119
ответ: 120\169,119\169,120\119.