РОЗВ'ЯЖІТЬ БУДЬ ЛАСКА ЗАДАЧУ Дано точки А (6;-4) і B (10;-8). При паралельному перенесенні відрізка АВ образом його середини є точка М1 (-8;6) Знайдіть образи точок А і В при такому паралельному перенесенні.
Пусть АВСД равнобедренная трапеция, ВС=11, АД=25 Сумма внутренних односторонних углов при двух параллельных и секущей равна 180°, т.е. <ВСД+<АДС=180°. Пусть <АДС=х, <ВСД=180°-х. Рассмотрим тр-к АСД. <АСД=½<ВСД=(180°-х)/2 - по условию: АС - биссектриса. <САД=180°-<АСД-<СДА=180°-(180°-х)/2-х=(360°-180°+х-2х)/2 =(180°-х)/2. Т.е. <АСД=<САД, т.е. тр-к АСД - равнобедренный, и СД=АД=25 Проведем высоту СЕ и найдем ее по теореме Пифагора, для этого найдем ДЕ. ДЕ=(АД-ВС)/2=(25-11)/2=14/2=7 ДЕ=√СД^2-ДЕ^2=√25^2-7^2=√625-49=√576=24 Найдем площадь трапеции. Площадь равна произведению полусуммы оснований на высоту S=(25+11)/2*24=36/2*24=18*24=432
Сумма внутренних односторонних углов при двух параллельных и секущей равна 180°, т.е. <ВСД+<АДС=180°. Пусть <АДС=х, <ВСД=180°-х.
Рассмотрим тр-к АСД. <АСД=½<ВСД=(180°-х)/2 - по условию: АС - биссектриса. <САД=180°-<АСД-<СДА=180°-(180°-х)/2-х=(360°-180°+х-2х)/2 =(180°-х)/2. Т.е. <АСД=<САД, т.е. тр-к АСД - равнобедренный, и СД=АД=25
Проведем высоту СЕ и найдем ее по теореме Пифагора, для этого найдем ДЕ. ДЕ=(АД-ВС)/2=(25-11)/2=14/2=7
ДЕ=√СД^2-ДЕ^2=√25^2-7^2=√625-49=√576=24
Найдем площадь трапеции. Площадь равна произведению полусуммы оснований на высоту
S=(25+11)/2*24=36/2*24=18*24=432
1.Нарушение целостности поверхностных слоев кожи, сопровождающееся точечным кровотечением - ссадина , потертость.
2.тот, кто будет обрабатывать рану, должен обеззаразить руки антисептиком;
на ссадину обильно налить хлоргексидин (антисептический раствор);
наложить стерильную повязку из марли либо специальную, предназначенную для лечения ссадин;
зафиксировать повязку бинтом либо лейкопластырем (зависит от масштабов и локализации повреждения).
Сначала 2 затем 3 , а после 1 , но не обязательно накладывать повязку или подорожник , будет достаточно последних 2 пунктов
Объяснение: