Как построить перпендикуляр или поделить отрезок пополам, я объяснять не буду - это вы должны уметь. А делается построение так.
1.Сначала строится прямоугольный треугольник по катету и гипотенузе. В качестве катета берется высота, а в качестве гипотенузы - основание.
Подробнее эта часть - проводится прямая, и к ней перпендикуляр (в произвольной точке). От точки пересечения откладывается вдоль прямой высота, в полученную точку ставится циркуль и проводится окружность радиуса, равного основанию, до пересечения с перпендикуляром. Прямоугольный треугольник построен.
2.Теперь продлеваем ВТОРОЙ (не равный высоте, а полученный в построении) катет за вершину (не жалеем карандаш :) однако замечу, то если треугольник задуман, как тупоугольный, то этот пункт не понадобится - прямая из пункта 4 пересечется со вторым катетом).
3.Последнее, что надо сделать - это поделить гипотенузу (то есть основание) пополам и провести прямую, перпедикулярную основанию, через его середину. (Вы должны уметь это делать циркулем и линейкой - это стандартная задача. Обычно это делают так - проводят 2 одинаковых окружности с центрами в концах отрезка, и точки пересечения окружностей соединяют - это и будет перпендикуляр к отрезку, проходящий через его середину).
4. Точка пересечения прямых из пунктов 3 и 4 даст нам вершину равнобедренного треугольника, и остается просто соединить её со вторым концом основания (с одним уже есть соединение :)))
В треугольнике ВДВ угол АВД равен 75 гр.. Он прямоугольный и АДВ = 15. А если при пересечении двух прямых т ретьей окажется, что какие-нибудь накрест лежащие равны, то прямые параллельны. Угол АВД равен углу ВДС и они накрест лежащие при прямых АД и ВС и секущей ВД. А раз углы равны, то прямые параллельны!
От конца основания циркулем больше половины стороны делаем засечку вверху и внизу. То же самое делаем от другого конца основания. Соединяем эти две точки и получаем прямую, которая проходит через середину основания, она же является высотой и медианой равнобедренного треугольника. Затем измеряем высоту и откладываем её на этой прямой и соединяем точки. У нас получится равробедренный треугольник по основанию и высоте, проведенной из вершины треугольника.
Как построить перпендикуляр или поделить отрезок пополам, я объяснять не буду - это вы должны уметь. А делается построение так.
1.Сначала строится прямоугольный треугольник по катету и гипотенузе. В качестве катета берется высота, а в качестве гипотенузы - основание.
Подробнее эта часть - проводится прямая, и к ней перпендикуляр (в произвольной точке). От точки пересечения откладывается вдоль прямой высота, в полученную точку ставится циркуль и проводится окружность радиуса, равного основанию, до пересечения с перпендикуляром. Прямоугольный треугольник построен.
2.Теперь продлеваем ВТОРОЙ (не равный высоте, а полученный в построении) катет за вершину (не жалеем карандаш :) однако замечу, то если треугольник задуман, как тупоугольный, то этот пункт не понадобится - прямая из пункта 4 пересечется со вторым катетом).
3.Последнее, что надо сделать - это поделить гипотенузу (то есть основание) пополам и провести прямую, перпедикулярную основанию, через его середину. (Вы должны уметь это делать циркулем и линейкой - это стандартная задача. Обычно это делают так - проводят 2 одинаковых окружности с центрами в концах отрезка, и точки пересечения окружностей соединяют - это и будет перпендикуляр к отрезку, проходящий через его середину).
4. Точка пересечения прямых из пунктов 3 и 4 даст нам вершину равнобедренного треугольника, и остается просто соединить её со вторым концом основания (с одним уже есть соединение :)))
В треугольнике ВДВ угол АВД равен 75 гр.. Он прямоугольный и АДВ = 15. А если при пересечении двух прямых т ретьей окажется, что какие-нибудь накрест лежащие равны, то прямые параллельны. Угол АВД равен углу ВДС и они накрест лежащие при прямых АД и ВС и секущей ВД. А раз углы равны, то прямые параллельны!
От конца основания циркулем больше половины стороны делаем засечку вверху и внизу. То же самое делаем от другого конца основания. Соединяем эти две точки и получаем прямую, которая проходит через середину основания, она же является высотой и медианой равнобедренного треугольника. Затем измеряем высоту и откладываем её на этой прямой и соединяем точки. У нас получится равробедренный треугольник по основанию и высоте, проведенной из вершины треугольника.