Есть такое свойство - квадрат высоты равен произведению проекций(ну или как-то так, но суть та). Вообщем, 12*3=квадрат высоты треугольника АВС. После несложных подсчётов получаем, что высота равна 6(Думаю, понятно почему). Дале, по Т. Пифагора рассматриваем 2 прямоугольных треугольника, которые образовались. когда провели высоту, к примеру, в точку К.(и при условии, что А - прямой угол) Тогда, 2 треугольника прямоугольны - это АКВ и АКС. По т. Пифагора в первом треугольнике получаем, что АВ равна 6 умноженная на корень из 5, а из второго треугольника получаем, что АС равна 3 умноженная на корень из 5. Ну а СВ понятно - 3+12=15.
Очень просто. Как всегда, обозначим трапецию стандартным АВСД. В точке А угол равен 60 градусов. Опустим из В высоту к основанию в точку, к примеру, К. Так вот, угол АВК равен 30 градусов(АВК-прямоугольный треугольник). Катет, лежащий против угла в 30 градусов равен половине гипотенузы => АК=0,5. Так как трапеция равнобедренная, проделываем ту же самую операцию и со второй стороной. Теперь выходит, что основание состоит из 0,5 + 0,5 + х. Но так как мы знаем длину основания, то легко находим х . х=1,7. Следовательно, ВС=1,7