так как средняя линия равна полусумме оснований то надо найти второе (большее основание), для этого проведем высоту из тупого угла к большему основанию. она отсечет от трапеции прямоугольник, то есть одна из частей разделенного высотой большего основания равна 10. найдем второй кусок большего основания дл я этого рассмотрим прямоугольный треугольник который образовала большая боковая сторона и высота. т.к один из острых углов в прямоугольном треугольнике равен 60 градусам, то 2ой угол равен 90-60=30 градусов. так каак в прямоугольном треугольнике катет лежащий против угла в 30 градусов (а это и есть нужный нам второй кусок большего основания) равен половине гипотенузы, то он равен 8/2=4. тогда большее основание равно сумме двух кусков то есть 10+4=14. средняя линия равна полусумме оснований, то есть (10+14)/2=24/2=12.
ответ:12.
p.s понимаю что на словах ничего не понятно поэтому вложен рисунок.
так как средняя линия равна полусумме оснований то надо найти второе (большее основание), для этого проведем высоту из тупого угла к большему основанию. она отсечет от трапеции прямоугольник, то есть одна из частей разделенного высотой большего основания равна 10. найдем второй кусок большего основания дл я этого рассмотрим прямоугольный треугольник который образовала большая боковая сторона и высота. т.к один из острых углов в прямоугольном треугольнике равен 60 градусам, то 2ой угол равен 90-60=30 градусов. так каак в прямоугольном треугольнике катет лежащий против угла в 30 градусов (а это и есть нужный нам второй кусок большего основания) равен половине гипотенузы, то он равен 8/2=4. тогда большее основание равно сумме двух кусков то есть 10+4=14. средняя линия равна полусумме оснований, то есть (10+14)/2=24/2=12.
ответ:12.
p.s понимаю что на словах ничего не понятно поэтому вложен рисунок.
В трапеции верхнее основание = 2см,
нижнее основание = 14 см.
Проведи две высоты с концов верхнего основания к нижнему.
По бокам трапеции получишь 2 равных прямоугольных треугольника
14 - 2 = 12 (см) - это 2 нижних катета обоих треугольников
12 : 2 = 6 (см) - это один нижний катет одного треугольника
Боковая сторона трапеции - это гипотенуза треугольника = 10 см
Нижний катет треугольника = 6см
Проведённая высота - это вертикальный катет треугольника
По теореме Пифагора определим высоту
Высота = √(10^2 - 6^2) = √(100 - 36) = √64 = 8(см)
ответ: 8 см - высота трапеции.