Точки С, B1, D1 лежат на одной прямой... Аксиома: Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей. точка С принадлежит и плоскости 4-угольника и плоскости альфа точка В1 принадлежит и плоскости 4-угольника (прямой АВ) и плоскости альфа точка D1 принадлежит и плоскости 4-угольника (прямой АD) и плоскости альфа т.е. эти три точки принадлежат обеим плоскостям и лежат на линии их пересечения плоскости пересекаются по прямой
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы.
По т.Пифагора с²=a²+b², где с - гипотенуза, a и b – катеты.
с=√(9²+12²)=15
R=15:2=7,5 см
Подробно.
Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров к его сторонам.
Срединные перпендикуляры прямоугольного треугольника пересекаются на середине гипотенузы, следовательно центр описанной окружности - середина гипотенузы, и радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. R=7,5 см.
Аксиома: Если две плоскости имеют общую точку,
то они имеют общую прямую, на которой лежат
все общие точки этих плоскостей.
точка С принадлежит и плоскости 4-угольника и плоскости альфа
точка В1 принадлежит и плоскости 4-угольника (прямой АВ) и плоскости альфа
точка D1 принадлежит и плоскости 4-угольника (прямой АD) и плоскости альфа
т.е. эти три точки принадлежат обеим плоскостям и лежат на линии их пересечения
плоскости пересекаются по прямой
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы.
По т.Пифагора с²=a²+b², где с - гипотенуза, a и b – катеты.
с=√(9²+12²)=15
R=15:2=7,5 см
Подробно.
Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров к его сторонам.
Срединные перпендикуляры прямоугольного треугольника пересекаются на середине гипотенузы, следовательно центр описанной окружности - середина гипотенузы, и радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. R=7,5 см.